首页|智能车辆转向控制系统设计与仿真

智能车辆转向控制系统设计与仿真

扫码查看
为抑制智能车辆在路径跟踪过程中车辆内部参数变化和外部扰动对控制系统鲁棒性的影响,提出一种递归滑模控制方法.基于二自由度车辆动力学模型,通过引入车辆与期望位置之间的横向误差构造递归滑模面,设计递归滑模控制器.考虑系统不确定性对控制系统鲁棒性的要求,基于径向基函数神经网络设计了估计器,用于反馈回路补偿.与现有控制方法仿真对比,本文中提出的控制方法可以快速跟踪到期望路径且不发生超调,当车辆遭受外部扰动时,可以有效抵抗外部扰动,在跟踪蛇形路径时性能指标提高86.65%,跟踪连续换道路径时提高81.35%,极大改善了系统的鲁棒性和抗干扰性.结果表明,采用该方法可改善无人车辆路径跟踪动态响应性能,能够满足稳定跟踪期望路径要求,具有重要应用前景.
Steering control system design and simulation for intelligent vehicle
To suppress the robustness of the control system due to the variation of vehicle internal parameters and external disturbances in the path tracking process of intelligent vehicles, this paper proposes a recursive sliding mode control method.Based on a two-degree-of-freedom vehicle dynamics model, a recursive sliding mode controller is designed by introducing the lateral error between the vehicle and the desired position to build a recursive sliding mode surface.Considering the requirement of system uncertainty on the robustness of the control system, an estimator based on radial basis function neural network is designed for the compensation in the feedback loop.Compared with the existing control methods, the proposed one quickly tracks the desired path without overshoot and effectively overcomes the external disturbance.It improves the vehicle's performance index by 86.65% on the serpentine path tracking and by 81.35% on the continuous lane change path tracking, greatly improving the robustness and anti-interference of the system.Our results show this method improves the dynamic response performance of path tracking of unmanned vehicles, meets the requirements of stable tracking of desired paths, and thus has huge application potentials.

unmanned vehiclespath tracinglateral displacementrecursive sliding mode controlneural network

吴坤、王明威、魏泰

展开 >

郑州工商学院 工学院,郑州 454000

甘肃省特种设备检验检测研究院,兰州 730050

智能车辆 路径跟踪 横向位置 递归滑模控制 神经网络

教育部"产学合作协同育人"项目

202102256009

2024

重庆理工大学学报
重庆理工大学

重庆理工大学学报

CSTPCD北大核心
影响因子:0.567
ISSN:1674-8425
年,卷(期):2024.38(7)
  • 23