首页|动态功能性连接模式的状态判决与分类研究

动态功能性连接模式的状态判决与分类研究

扫码查看
针对动态脑网络分析中存在不同状态的连接模式,采用传统的聚类算法效果较差的问题,对神经疾病患者进行动态功能性连接分析,寻找稳定的状态特征来提高疾病分类准确率.阐述了脑网络构建、分析等基本理论,对现有研究存在的不足进行分析,介绍了动态功能性连接计算和有效特征提取过程.提出一种在交叉验证下微状态识别法,并与基于线性表达的维度压缩法结合,对原始动态功能连接进行稳定聚类与特征降维;引入类内距离准则对交叉验证下组内特征进行特征选择,对分类模型进行优化,提高了分类准确率.对比已有的聚类识别状态方法在公共数据集及轻度认知障碍识别分类中的应用,结果表明所提方法在稳定聚类和分类预测方面均表现较好,在特征选择后的分类准确率可以达到最优值86%.
State judgment and classification of dynamic functional connectivity patterns
To address the poor performance of traditional clustering algorithms due to the existence of different status connection patterns in dynamic brain network analysis, dynamic functional connection analysis is conducted on patients with neurological diseases in order to find stable connection patterns of the disease to improve classification accuracy.This paper outlines the theoretical background, including brain network construction and analysis.By analyzing the weaknesses of current research, it focuses on the dynamic functional connection calculation and effective feature extraction process.This paper proposes a microstate identification method under cross-validation, and combines it with the dimension compression method based on linear expression to perform stable clustering and feature dimensionality reduction on the original dynamic functional connections; the intra-class distance criterion is introduced to perform intra-group feature optimization under cross-validation.Feature selection, the classification model is optimized and the classification accuracy is improved.A comparison of the current clustering identification state methods in public data sets and mild cognitive impairment identification and classification shows that the proposed method performs better in stable clustering and classification prediction, and in the classification after feature selection.The accuracy reaches 86%, the highest level.

dynamic brain networkfunctional connectivitystate recognitionfeature selectionclassification

马佳、吴海锋、李顺良

展开 >

云南民族大学 电气信息工程学院,昆明 650504

云南省无人自主系统重点实验室,昆明 650500

动态脑网络 功能性连接 状态识别 特征选择 分类

国家自然科学基金云南省教育厅科研项目云南民族大学科研创新基金

6216102372023Y04982022SKY005

2024

重庆理工大学学报
重庆理工大学

重庆理工大学学报

CSTPCD北大核心
影响因子:0.567
ISSN:1674-8425
年,卷(期):2024.38(7)
  • 19