首页|基于SHAP重要性排序和时空双流的多风场超短期功率预测

基于SHAP重要性排序和时空双流的多风场超短期功率预测

扫码查看
针对多风场风功率预测中时空特征提取不充分的问题,提出一种基于空间、时间双流特征提取的功率预测方法.采用沙普利加性解释(SHAP)方法分析原始高维数值天气预报(NWP)中各变量的重要性,选择贡献度高的变量子集作为预测模型输入,降低模型复杂度.构建基于自适应动态邻接矩阵的改进图注意力网络(IGAT)提取多风场的动态空间特征;同时将多头注意力机制(MHA)与时间卷积网络(TCN)结合,加强关键时序特征的学习.使用前馈神经网络输出多风场功率预测结果.以西北某十风场的数据进行案例研究,结果表明所提模型的预测效果优于其他模型.
Ultra-short-term power forecasting for multiple wind fields based on SHAP importance ranking and spatio-temporal dual flow
To address the insufficient spatio-temporal feature extraction in multi-wind field wind power prediction, this paper proposes a power prediction method based on spatial and temporal dual-stream feature extraction.First, the Shapley Additive Explanations ( SHAP) method is employed to analyze the importance of each variable in the original high-dimensional Numerical Weather Prediction ( NWP) , and a subset of variables with high contribution is selected as the input to the prediction model, reducing the complexity of the model.Second, an Improved Graph Attention Network ( IGAT) based on an adaptive dynamic adjacency matrix is built to extract the dynamic spatial features of multiple wind fields.Meanwhile, Multi-Head Attention Mechanism ( MHA) is integrated with Temporal Convolutional Network ( TCN) to enhance the learning of key temporal features.Then, a feed-forward neural network is used to output the power prediction results of multiple wind fields.Finally, a case study is conducted with data from ten wind fields in Northwest China, and our results show the proposed model performs better in prediction than other models.

multi-wind field power predictionvariable selectiongraph attention networkmulti-head attention mechanismtemporal convolutional network

付波、李昊、权轶、李超顺、赵熙临、杨远程

展开 >

湖北工业大学 电气与电子工程学院, 武汉 430068

华中科技大学 土木与水利工程学院, 武汉 430074

国网石首市供电公司, 湖北 荆州 434400

多风场功率预测 变量选择 图注意力网络 多头注意力机制 时间卷积网络

湖北省重点研发计划项目

2021BAA193

2024

重庆理工大学学报
重庆理工大学

重庆理工大学学报

CSTPCD北大核心
影响因子:0.567
ISSN:1674-8425
年,卷(期):2024.38(9)
  • 5