首页|风力机叶片强迫振动的格林函数解

风力机叶片强迫振动的格林函数解

扫码查看
利用Euler-Bernoulli梁模型和Greenberg表达式构建了风力机叶片弯曲-弯曲-扭转耦合强迫振动方程.基于振动方程将位移分解为准静态位移和动态位移,通过Laplace变换和叠加原理得到风力机叶片强迫振动的Fredholm积分方程组,通过对方程组离散,最终求得风力机叶片弯曲-弯曲-扭转耦合强迫振动的Green函数半解析解.通过数值计算,将所得的解与现有文献的解进行比较,验证了解的准确性.研究表明,无量纲阻尼系数的大小只对叶片一阶固有频率峰值影响较大,并且叶片在挥舞振动下的隔振区域出现在二阶固有频率之后,而摆振下的隔振区域出现在一阶和二阶固有频率之间;叶片的入流角和转速对叶片振动响应的影响不容忽视,叶片的耦合振动会导致叶片的准静态位移显著增加.
Green's function solution for forced vibration of wind turbine blades
By employing Euler-Bernoulli beam model and Greenberg expression,this paper builds the bending-bending-torsional coupled forced vibration equation of wind turbine blade.Based on the vibration equations,the displacement is decomposed into quasi-static displacement and dynamic displacement,and Fredholm integral equations for the forced vibration of wind turbine blades are obtained by Laplace transform and superposition principle.The semi-analytical solution of Green function for the coupled forced vibration of wind turbine blades is obtained by discrete equations.Through numerical calculation,the obtained solutions are compared with those in the existing literature to verify the accuracy of the understanding.Our results show:(1 )the dimensionless damping coefficient only exerts a great impact on the peak value of the first order natural frequency of the blade,and the vibration isolation region of the blade under flap vibration appears after the second order natural frequency,while the vibration isolation region under lead/lag vibration appears between the first and second order natural frequency;(2 )the effects of inflow angle and rotational speed of the blade on the vibration response of the blade are not negligible and the coupling vibration of the blade leads to a marked increase in the quasi-static displacement of the blade.

wind turbine bladebending-bending-torsional coupledGreen functionLaplace transform

赵翔、姜旭、李映辉

展开 >

西南石油大学 土木与测绘学院,成都 610000

西南交通大学 力学与航空航天学院,成都 610000

风力机叶片 弯曲-弯曲-扭转耦合 Green函数 Laplace变换

国家自然科学基金面上项目四川省自然科学基金项目

2022NSFSC027512072301

2024

重庆理工大学学报
重庆理工大学

重庆理工大学学报

CSTPCD北大核心
影响因子:0.567
ISSN:1674-8425
年,卷(期):2024.38(11)
  • 10