首页|利用EEMD和深度置信网络的滚动轴承故障诊断方法

利用EEMD和深度置信网络的滚动轴承故障诊断方法

扫码查看
结合滚动轴承振动信号的非线性特点,开展基于EEMD和深度置信网络(deep belief network,DBN)的滚动轴承故障诊断方法研究.应用EEMD对信号进行分解后,结合相关系数与峭度分析完成信号重构,构建加速度-速度矩阵作为DBN模型输入,实现滚动轴承不同故障类型及其损伤程度的诊断预测.研究过程中对模型泛化能力、层特征提取能力、模型分析结果和分析效率等方面进行了对比分析,对原始数据、加速度-速度矩阵、相图作为DBN模型输入的诊断效果进行了对比分析,同时进行了SVM、XGboost、ResNet、DBN不同网络模型的对比分析.分析结果表明,利用EEMD进行信号处理并构建加速度-速度矩阵作为DBN模型输入可以有效实现滚动轴承的不同故障类型和故障损伤程度的诊断,诊断平均准确率达到97.23%.此模型可为轴承状态监测与智能故障诊断技术的工程应用提供参考.
Rolling bearing fault diagnosis method based on EEMD and deep belief network
Combined with the nonlinear characteristics of vibration signals of rolling bearings,in order to restore the nonlinear dynamic characteristics of signals,the fault diagnosis method of rolling bearings based on EEMD and Deep Belief Network (DBN)is studied,and the diagnosis and prediction of different fault types and damage degrees of rolling bearings are realized.First,after EEMD is used to decompose the signal,the signal reconstruction is completed by combining the correlation coefficient and kurtosis analysis.On this basis,the acceleration-velocity matrix is constructed as the input of the DBN model to realize the diagnosis and prediction of different fault types and damage degrees of rolling bearings.In the process,the model generalization ability,layer feature extraction ability,model analysis results and analysis efficiency are compared and analyzed.The original data,acceleration-velocity matrix and phase diagram are employed as the input of DBN model to analyze and compare the diagnostic effect.The comparative analysis of different network models of SVM,XGboost,ResNet and DBN is made.Our results show using EEMD for signal processing and constructing acceleration-velocity matrix as the input of DBN model effectively achieve the diagnosis of different fault types and fault damage degrees of rolling bearings with the average diagnostic accuracy reaching 97.23%.This model may provide some insightful reference for the engineering application of bearing condition monitoring and intelligent fault diagnostic technology.

deep belief networkrolling bearingsfault diagnosisstate evaluation

郑鑫辉、马超、王少红、徐小力

展开 >

北京信息科技大学 现代测控技术教育部重点实验室,北京 100192

北京信息科技大学 机电系统测控北京市重点实验室,北京 100192

深度置信网络 滚动轴承 故障诊断 状态评价

国家自然科学基金项目北京信息科技大学勤信人才项目北京市科学技术概念验证项目

51975058QXTCPC20212020220481077

2024

重庆理工大学学报
重庆理工大学

重庆理工大学学报

CSTPCD北大核心
影响因子:0.567
ISSN:1674-8425
年,卷(期):2024.38(11)
  • 7