首页|计及同步电机饱和影响的小干扰稳定评估方法

计及同步电机饱和影响的小干扰稳定评估方法

扫码查看
目前,基于机器学习的电力系统小干扰稳定评估方法往往只利用稳态潮流数据来构建机器学习模型,未充分考虑同步电机饱和特性这一影响小干扰稳定分析结果的重要因素.一旦同步电机由于改造、更换等因素导致其饱和特性发生变化,反映小干扰稳定性的物理量(如特征值、最小阻尼比等)可能也会发生变化,但基于潮流数据得到的小干扰稳定结果却不会改变,无法准确反映小干扰稳定性.为此,提出一种计及同步电机饱和影响的小干扰稳定评估方法.将卷积神经网络(convolutional neural network,CNN)和图卷积神经网络(graph convolutional neural net-work,GCN)融合,构建CNN-GCN模型来提升机器学习模型的特征提取能力.该模型同时考虑同步电机饱和系数和稳态潮流数据,实现对最小阻尼比的预测.针对IEEE14节点系统的算例结果验证了所提方法的有效性和优越性.
Small disturbance stability evaluation method considering the saturation impact of synchronous machine
Currently,the small disturbance stability evaluation methods based on machine learning only use steady power flow data to build machine learning models.Therefore,the saturation characteristics of synchronous machine,an important factor affecting the analysis results of small disturbance stability,are not fully considered.Once the saturation characteristics of a synchronous machine change due to retrofit,replacement and other factors,the physical quantities reflecting the stability of small disturbance,such as characteristic values,minimum damping ratio,may also change whereas the corresponding analysis results based on power flow data remain unchanged.Thus,the stability of small disturbance is not accurately reflected.To address the issue,this paper proposes a small disturbance stability evaluation method with full considerations of the saturation impact of synchronous machines.The method integrates Convolutional Neural Network (CNN)and Graph Convolutional Neural Network (GCN)and then a model called CNN-GCN is built to improve the feature extraction ability of machine learning model.In this model,saturation coefficient of machine and steady-state power flow data are employed to predict the minimum damping ratio.The effectiveness and superiority of the proposed method are validated by the IEEE14-node system.

synchronous machine saturationsmall signal stabilitymachine learningfusion model

刘川、李登峰、刘育明、徐瑞林、李小菊、黄淼

展开 >

重庆邮电大学 自动化学院,重庆 400065

国网重庆市电力公司电力科学研究院,重庆 401123

同步电机饱和 小干扰稳定 机器学习 融合模型

国网重庆市电力公司科技项目国网重庆市电力公司科技项目

2023渝电科技11SGCQDK00DYJS2310173

2024

重庆理工大学学报
重庆理工大学

重庆理工大学学报

CSTPCD北大核心
影响因子:0.567
ISSN:1674-8425
年,卷(期):2024.38(11)
  • 8