首页|面向财务审计的数据异常侦测算法研究

面向财务审计的数据异常侦测算法研究

扫码查看
为更好地推进审计数字化,实现财务审计的数据异常侦测任务,设计了采用独立研究的改进注意力机制CMA(channel mixed attention mechanism)的CMA-Resnet18 模型,提出一种基于数图转换思想的财务审计侦测数据集构建方法.使用CMA网络对样本各通道进行全局加权,对样本不同通道进行融合特征加权,实现对样本数据的全局"注意力"数据增强.通过Resnet18 模型(residual network18)提取样本数据的局部特征.结果表明,在财务审计异常侦测数据集上,经典分类网络的评估结果都高于90%,验证了数据集构建方法的有效性;CMA-Resnet18 模型的F1值为94.31%,相比Resnet18 提高了1.49%,证明了CMA-Resnet18 模型能够更好的实现侦测任务;通过经典分类网络及其CMA变种网络在Cifar10 公开数据集上进行实验,表明CMA变种网络的准确率普遍高于其原始网络,证明CMA模块的有效性和泛化性.
Research on data anomaly detection algorithm for financial audit
To better promote the digitalization of audit and fulfil the task of detecting data anomalies in financial audits,a CMA-Resnet18 model based on an improved attention mechanism CMA(Channel Mixed Attention mechanism)of independent research is designed,and a detection dataset construction method based on the idea of digital image transformation is proposed.First,the CMA network is employed to globally weight each channel of the sample and weight different channels of the sample with fusion features to realize the global"attention"data enhancement of the sample data.Then,the local features of the sample data are extracted by Resnet18 model(residual network18).Finally,the intelligent detection of financial data anomalies is realized.Our experimental results show on the financial audit anomaly detection dataset,the evaluation of the classical classification network is higher than 90%,proving the effectiveness of the dataset construction method;the F1 value of the CMA-Resnet18 model is 94.31%,1.49%higher than that of Resnet18,demonstrating the model performs better in the detection tasks.Our experiments with classical classification networks and their CMA variants on the Cifar10 public dataset show the accuracy of the CMA variants is generally higher than that of their original networks,demonstrating the effectiveness and generalization of the CMA module.

audit digitizationdigital image transformationdataset constructionimproved attention mechanismsresidual network

张学凯、张仰森、刘帅康、朱思文、孙圆明

展开 >

北京信息科技大学智能信息处理研究所,北京 100192

审计数字化 数图转换 数据集构建 改进注意力机制 残差网络

2024

重庆理工大学学报
重庆理工大学

重庆理工大学学报

CSTPCD北大核心
影响因子:0.567
ISSN:1674-8425
年,卷(期):2024.38(13)