首页|基于掩码自监督学习的滚动轴承冲击特征提取方法

基于掩码自监督学习的滚动轴承冲击特征提取方法

扫码查看
现有的机械故障智能诊断方法普遍需要大量的可靠样本作为模型的训练支撑,然而,实际应用场景通常缺少标签数据.针对这一难题,提出一种基于掩码自监督学习的滚动轴承局部故障冲击特征提取方法.利用随机掩码对原始轴承故障信号进行布尔运算,得到用于特征提取训练的自监督样本;将掩码处理后的信号输入所搭建的掩码自监督学习网络中,建立包含网络输出与输入峭度差信息的损失函数,对网络进行基于随机掩码自监督学习的多轮训练,使网络获得从原始故障信号中提取故障冲击特征的能力.仿真信号分析表明,所提方法在掩码遮盖比例为95%、训练轮次为250 时,能够以96.68%的重构精度重建原始信号中的冲击序列.滚动轴承故障实验进一步表明,所提方法在无需额外训练数据的前提下能有效地从含噪信号中提取故障冲击序列,在效果均优于对比方法最优结果的前提下,所提方法计算耗时低于20 s,远优于MCKD类方法,具有较好的应用价值.
Rolling bearing impact feature extraction based on masked self-supervised learning
The existing mechanical fault intelligent diagnosis methods generally require a large number of reliable samples for model training.However,in application scenarios,the labeled training data are scarce.To address the problem,this paper proposes a method for extracting local impact fault feature of rolling bearings based on masked self-supervised learning.It employs random mask to perform Boolean operations on the original signal of the faulty bearings,and obtains samples for self-supervised feature extraction training.Then,the masked signal is entered into the masked-self-supervised learning network,based on loss function including the difference between the input and output kurtosis of the network and the random mask self-supervised learning,and the ability of the network to extract impact fault feature from the original fault signal is obtained.Our simulation signal analysis indicates the proposed method rebuilds the impulse sequences in the original signal with a reconstruction accuracy of 96.68%when the mask occlusion ratio is 95%and the training rounds 250.The rolling bearing fault experiments further show the proposed method effectively extracts the fault impact sequences from noisy signals without additional training data and has a huge potential for applications.On condition that the effects are superior to the best results of the other methods in comparison,the proposed method has a computing time of less than 20 seconds,far better than MCKD-type methods,demonstrating its huge application potentials.

maskself-supervised learningrolling bearingconvolutional neural network

李可轩、林慧斌、丁康

展开 >

华南理工大学 机械与汽车工程学院,广州 510641

掩码 自监督学习 滚动轴承 卷积神经网络

2024

重庆理工大学学报
重庆理工大学

重庆理工大学学报

CSTPCD北大核心
影响因子:0.567
ISSN:1674-8425
年,卷(期):2024.38(13)