首页|改进MSCNN-ECA的轴承故障诊断方法研究

改进MSCNN-ECA的轴承故障诊断方法研究

扫码查看
提出一种基于注意力机制的卷积神经网络轴承故障诊断方法:首先,对滚动轴承数据进行截取,通过连续小波变换生成二维图像数据;然后,利用多尺度卷积神经网络(multiscale convolutional neural networks,MSCNN)对输入数据进行特征提取,期间带有残差结构的高效卷积模块将最大限度地保留有效特征信息,提取数据再经过通道注意力模块(efficient channel attention,ECA)进行特征筛选;最后,经过全连接层特征映射后进行故障类别预测.选用凯斯西储大学数据集对模型结果进行验证,并与CNN-LSTM模型、ResNet模型以及LeNet模型等进行对比,所提方法耗费时间短,诊断精度最高.在单负载情况下能够取得100%的诊断精度,在多负载情况下准确率仍高达 99.46%,优于其余先进算法.另外,采用江南大学轴承数据进行泛化性验证,所提方法具有良好的迁移效果.
Research on improving the bearing fault diagnosis method of MSCNN-ECA
Convolutional neural networks(CNNs),as powerful feature extraction tools,can effectively extract fault-bearing data from complex environments,thus improving recognition accuracy.This paper proposes a convolutional neural network-based bearing fault diagnosis method.First,rolling bearing data is sampled,and two-dimensional image data is generated through continuous wavelet transformation.Next,a Multiscale Convolutional Neural Network(MSCNN)is employed to extract features from the input data.Efficient convolution modules with residual structures maximize the retention of valid feature information,followed by feature selection using Channel Attention Modules(Efficient Channel Attention,ECA).Finally,after feature mapping via fully connected layers,the model predicts fault categories.Experimental validation is conducted by employing the dataset from Case Western Reserve University and the results generated from CNN-LSTM,ResNet,LeNet,and other models are compared.The proposed method consumes less time and achieves the highest diagnostic accuracy.Under single-load conditions,it achieves 100%diagnostic accuracy,while under multi-load conditions,it reaches an accuracy as high as 99.46%,surpassing other advanced algorithms.Additionally,the bearing data from Jiangnan University is employed for generalization validation,showing impressive transfer effects.

convolutional neural networksbearingattention mechanismfault diagnosis

沈启敏、贾月静、程艳

展开 >

晋中信息学院,山西 晋中 030800

太原重工轨道交通设备有限公司,太原 030032

卷积神经网络 轴承 注意力机制 故障诊断

2024

重庆理工大学学报
重庆理工大学

重庆理工大学学报

CSTPCD北大核心
影响因子:0.567
ISSN:1674-8425
年,卷(期):2024.38(13)