首页|智能网联汽车轨迹预测研究现状与趋势

智能网联汽车轨迹预测研究现状与趋势

扫码查看
围绕现有轨迹预测方法展开研究,给出轨迹预测的数学模型、数据集及评估指标.介绍轨迹预测研究现状,重点回顾基于数据驱动的轨迹预测方法,包括深度学习和强化学习.同时,从时空建模、交互信息、场景上下文等方面,对比、分析、归纳现有研究方法的网络模型结构、优势和适用场景.进一步探讨多智能体、多模态轨迹预测的研究趋势,并指出轨迹预测结合大语言模型这一前瞻性趋势.强调智能驾驶场景下轨迹预测技术面临的挑战,展望了轨迹预测未来发展.
Research status and trend of trajectory prediction for intelligent connected vehicles
As a key technology on intelligent connected vehicles,trajectory prediction plays an important role in ensuring vehicle safety and preventing traffic accidents.Based on the existing trajectory prediction methods,the mathematical model,data set and evaluation index of trajectory prediction are presented in this paper.Then,the current research of trajectory prediction is introduced,and the data-driven trajectory prediction methods such as deep learning and reinforcement learning are reviewed.Meanwhile,the network model structure,advantages and applicable scenarios of existing research methods are compared and analyzed with the view of space-time modeling,interactive information and scene context.Finally,the research trend of multi-agent and multi-modal trajectory prediction and the future trend of trajectory prediction combined with large language model are further discussed.

automatic drivingtrajectory predictionagentdata setevaluation index

杨智勇、杨俊、欧明辉、周瑜

展开 >

重庆师范大学 计算机与信息科学学院,重庆 401331

重庆工程职业技术学院 大数据与物联网学院,重庆 402260

重庆工程职业技术学院 财经与旅游学院,重庆 402260

自动驾驶 轨迹预测 数据驱动 数据集 评价指标

2024

重庆理工大学学报
重庆理工大学

重庆理工大学学报

CSTPCD北大核心
影响因子:0.567
ISSN:1674-8425
年,卷(期):2024.38(17)