首页|城市道路场景下的被遮挡车辆检测算法研究

城市道路场景下的被遮挡车辆检测算法研究

扫码查看
为了提高智能汽车在城市道路场景下对前方被遮挡车辆的检测精度,提出了一种双尺度点云密度扩展网络BPDE-Net,来解决因存在车辆被遮挡而导致的目标点云稀疏问题.第一阶段,将原始点云投影到语义分割后的图像标签上,并在遮挡区域内随机生成固定数目的虚拟点,采用混合插值法来关联虚拟点和实际投影点,得到的虚拟点再反向映射到点云空间;第二阶段,使用马氏距离来关联相邻体素间的点云,以此增加每个体素内的相似点云数量,通过改进注意力高斯矩阵来计算体素特征所对应的相对位置编码,用于关注通道内不同体素序列的相对位置.在KITTI数据集中选取了大量的车辆之间存在遮挡的城市道路场景进行对比试验,结果表明:BPDE-Net在3D视角和鸟瞰图视角下的被遮挡车辆平均检测精度(mAP)分别为79.2%和83.7%,相较于基线网络Second分别提高了11.2%和12.5%;点云密度增强模块和体素特征融合模块的mAP相较于目前主流的方法分别提高了3.9%与1.8%,提升了车辆在被遮挡场景下的可辨识度与鲁棒性.
Research on detection algorithms for occluded vehicles on urban roads
To enhance the detection accuracy of occluded vehicles on urban roads for intelligent vehicles,this paper proposes a bi-scale point cloud density expansion network (BPDE-Net) to address the sparse object point cloud issue caused by vehicle occlusion.First,the original point cloud is projected onto image labels after semantic segmentation,and a fixed number of virtual points are randomly generated within occluded areas.A mixed interpolation method is employed to associate virtual points with actual projected points,and the obtained virtual points are then reverse-mapped to the point cloud space.Next,the Mahalanobis distance is utilized to associate point clouds between adjacent voxels,increasing the number of similar point clouds within each voxel.An improved attention Gaussian matrix is used to calculate the relative position encoding corresponding to voxel features,focusing on the relative positions of different voxel sequences within the channel.Extensive comparative experiments are conducted on urban roads with occlusions between numerous vehicles selected from the KITTI dataset.Our results indicate the average detection accuracy of occluded vehicles under both 3D and bird's-eye-view perspectives by BPDE-Net reaches 79.2% and 83.7% respectively.Compared to the baseline network Second,BPDE-Net improves by 11.2% and 12.5% respectively.Additionally,the mAP of the point cloud density enhancement module and voxel feature fusion module is increased by 3.9% and 1.8% respectively compared to current mainstream methods,enhancing the recognizability and robustness of vehicles in occluded scenarios.

obstructed vehicle detectionattention mechanismpoint cloud density enhancementvoxel features fusionmultimodal fusion

江浩斌、任俊豪、李傲雪、傅世友

展开 >

江苏大学 汽车工程研究院,江苏 镇江 212013

江苏大学 汽车与交通工程学院,江苏 镇江 212013

被遮挡车辆检测 注意力机制 点云密度增强 体素特征融合 多模态融合

2024

重庆理工大学学报
重庆理工大学

重庆理工大学学报

CSTPCD北大核心
影响因子:0.567
ISSN:1674-8425
年,卷(期):2024.38(17)