首页|针对临时道路的端到端自动驾驶模型研究

针对临时道路的端到端自动驾驶模型研究

扫码查看
近年来,基于深度学习的自动驾驶模型逐渐成为无人驾驶领域的研究热点,常规的自动驾驶模型多采用多级模块串联的方式构建,分别完成感知、规划、循迹等功能,存在耦合性高抗风险能力差的问题.文中提出一种针对临时道路的无人驾驶车辆自动驾驶端到端模型,该模型采用三路视觉传感器图像为输入,以GCViT作为主干网络进行图像特征提取,通过Transformer网络和GRU网络输出局部规划路径,采用PID算法输出转角信息,实现无人驾驶车辆自动循迹.实验结果表明,端到端模型的单帧轨迹规划耗时约80 ms,平均轨迹偏差为0.689 m,满足实时性要求的同时,可完成无人驾驶车辆在临时道路环境下的循迹任务.
Research on modeling end-to-end autonomous driving of UGV in temporary road environments
In recent years,deep learning based autonomous driving models have gained keen academic attention.Conventional autonomous driving models are mostly built in series using multi-level modules,which individually perform functions such as perception,planning and tracking.However,the problems of high coupling and poor risk resistance exist.To address these issues,this paper proposes an end-to-end model for autonomous driving of UGV on temporary roads.It employs three visual sensor images as inputs,GCViT as the backbone network for image feature extraction,transformer network and GRU network to output local planning paths,and PID algorithm to output corner information to achieve automatic tracking of UGV.Our experimental results show the single frame trajectory planning of the end-to-end model takes about 80ms,with an average trajectory deviation of 0.689 meters.Our model meets the real-time requirements and performs the tracking task of UGV on temporary roads.

end-to-enddeep neural networkautonomous drivingtransformer

王立勇、谢敏、苏清华、王弘轩、王绅同、张鹏博、姜海燕

展开 >

北京信息科技大学 现代测控技术教育部重点实验室,北京 100192

端到端 深度神经网络 自动驾驶 Transformer网络

2024

重庆理工大学学报
重庆理工大学

重庆理工大学学报

CSTPCD北大核心
影响因子:0.567
ISSN:1674-8425
年,卷(期):2024.38(17)