首页|多算法融合的超临界W火焰炉水冷壁壁温预测模型研究

多算法融合的超临界W火焰炉水冷壁壁温预测模型研究

扫码查看
针对某火电厂水冷壁在深度调峰背景下易发生拉裂而需对水冷壁管间温度梯度进行监控的问题,构建了一种基于PCA-SSA-LSTM多算法融合的预测模型,实现对易拉裂管附近水冷壁管出口壁温的有效预测.为改善模型的预测性能,依据壁温计算理论选取17个输入参数,使用PCA法进行降维处理;采用SSA算法优化PCA-LSTM预测模型超参数,得到最优PCA-SSA-LSTM壁温预测模型.通过与其他预测模型对比发现,融合模型的决定性系数(R2)值有一定程度的增大,均方根误差(RMSE)及平均绝对百分比误差(MAPE)有不同幅度的降低.实际应用表明:建立的多算法融合模型可有效提高多管出口壁温预测精度,能作为电厂DCS监测系统的补充,预警危险壁温,降低因管间大温差造成的水冷壁拉裂风险.
Study on wall temperature prediction model of supercritical W-shape flame boiler based on algorithms integration
Addressing the water wall cracking in some thermal power plant under deep peak shaving conditions requires the monitoring of the temperature gradient between water wall tubes.This paper builds a predictive model based on PCA-SSA-LSTM algorithms integration to achieve effective prediction of outlet wall temperature near susceptible cracking tubes.First,to enhance the predictive performance of the model,17 input parameters are selected by wall temperature calculation theory,and PCA is employed for dimensionality reduction.Then,the SSA algorithm is adopted to optimize the hyperparameters of the PCA-LSTM prediction model,resulting in the optimal PCA-SSA-LSTM wall temperature prediction model.Comparison with other prediction models reveals a certain increase in the coefficient of determination (R2) for the model,along with varying degrees of reduction in root mean square error (RMSE) and mean absolute percentage error (MAPE).Application demonstrates the algorithms integration model effectively enhances the accuracy of predicting outlet wall temperatures for multiple tubes,serving as a supplement for the power plant' s DCS system to issue early alerts of critical wall temperatures,thereby reducing the risk of water wall cracking caused by large temperature differences between tubes.

algorithms integrationmodelingsupercritical w-flame boilerwater-cooled wall tubeswall temperature prediction

殷金桥、钱进、邓传记、杨柳

展开 >

贵州大学 电气工程学院,贵阳 550025

国家电投集团贵州金元茶园发电有限责任公司,贵州 毕节 551700

贵州师范大学 大数据与计算机科学学院,贵阳 550025

多算法融合 建模 超临界W火焰炉 水冷壁管 壁温预测

2024

重庆理工大学学报
重庆理工大学

重庆理工大学学报

CSTPCD北大核心
影响因子:0.567
ISSN:1674-8425
年,卷(期):2024.38(17)