首页|基于改进PointPillars的3D目标检测算法

基于改进PointPillars的3D目标检测算法

扫码查看
针对自动驾驶场景下远距离及遮挡目标识别问题,对PointPillars算法进行了改进.引入了并行的空间注意力和通道注意力机制,增强了目标的位置信息及有用特征通道权重,提高了远距离目标的检测精度.在2D CNN骨干网络中引入了自适应空间特征融合模块,解决了特征拼接的信息丢失问题,提高了遮挡目标的检测精度.基于KITTI数据集在3种不同场景难度下分别对SECOND、PointPillars、改进PointPillars这3种算法进行了定量分析验证,并将改进的PointPillars算法进行可视化分析.定量分析表明,改进PointPillars算法在鸟瞰图模式下目标检测精度最大提升2.75%;在三维模式下目标检测精度最大提升2.93%;在AOS模式下目标检测精度最大提升4.05%,可视化结果表明改进的PointPillars算法能有效检测远距离及遮挡目标.
Research on 3D target detection algorithm based on PointPillars
To better identify long-distance and occluded targets in autonomous driving scenarios,this paper improves the PointPillars algorithm.Parallel spatial attention and channel attention mechanisms are introduced to enhance the target's position information and useful feature channel weights and thus improve the detection accuracy of long-distance targets.An adaptive spatial feature fusion module is employed in the 2D CNN backbone network,which addresses information loss in feature splicing and improves the detection accuracy of occluded targets.Based on the KITTI dataset,this paper conducts quantitative analysis and verification on SECOND,PointPillars,and our improved PointPillars algorithm under three different scenarioes.Our improved PointPillars algorithm is also visualized.Results show our method achieves a maximum improvement of 2.75%in target detection accuracy in bird's-eye view mode,of 2.93%in three-dimensional mode,and of 4.05%in AOS mode.Our visualization results indicate the improved PointPillars algorithm effectively detects long-distance and occluded targets.

target detectionPointPillarsattention mechanismpoint cloudadaptive spatial feature fu-sion

谢生龙、邵金菊、单少飞、孙福昌、王磊

展开 >

山东理工大学交通与车辆工程学院,山东淄博 255000

睿羿科技(山东)有限公司,山东淄博 255000

目标检测 PointPillars 注意力机制 点云 自适应空间特征融合

2024

重庆理工大学学报
重庆理工大学

重庆理工大学学报

CSTPCD北大核心
影响因子:0.567
ISSN:1674-8425
年,卷(期):2024.38(19)