首页|网联信息诱导下的商业地下停车场驾驶行为研究

网联信息诱导下的商业地下停车场驾驶行为研究

扫码查看
商业地下停车场内部结构复杂、通道较窄,且相交通道视野范围小,驾驶员在寻找停车位时效率低且容易发生碰撞.以商业配建地下停车场为研究对象,基于驾驶模拟实验获取的微观驾驶行为数据,选取平均速度、平均加速度、制动位置对车辆操控行为进行分析,选取寻泊时间、路段通过时间、寻泊距离和最短路径选择对寻泊行为进行分析,并对不同驾驶风格的驾驶行为进行讨论.结果表明:对于车辆控制行为,停车信息诱导系统(parking guidance information systems,PGIS)可以重构抵近盲区交叉口的驾驶过程,使驾驶员平均速度降低36.90%,加速度降至2.55 m/s2以下,对不同风格驾驶员平均速度的影响具有显著性.对于寻泊行为,PGIS可诱导驾驶员经最短路径到达目的地,有效减少寻泊时间;对保守型和普通型驾驶员的路段通行时间减少不显著,对激进型的路段通行时间具有显著影响.研究结果为车联网技术在城市交通领域的发展提供了新的视角.
Research on driving behavior in commercial underground garages based on connected information guidance
The complex internal structure and narrow passages of underground parking lots,coupled with limited visibility at intersecting pathways,cause low efficiency and higher collision risks for drivers searching for parking spaces.This paper investigates commercial integrated underground parking garages and utilizes micro-level driving behavior data obtained from driving simulator experiments.It examines vehicle handling behavior through the analysis of average speed,average acceleration,and braking positions.Meanwhile,cruising behavior is evaluated through the analysis of parking search time,segment traversal time,search distance,and optimal path selection.Then,it discusses driving behaviors associated with different driving styles.Our results indicate:1)PGIS effectively reconstructs driving behavior in close-proximity blind spots at intersections,leading to a significant 36.90%reduction in average speed,and a noticeable impact on average speed across different driving styles,with acceleration uniformly reduced to below 2.55 m/s2;2)Regarding parking search behavior,PGIS guides drivers through the shortest path to their destination,effectively cutting the search time.While the impact on segment traversal time for conservative and regular drivers is insignificant,it significantly influences segment traversal time for aggressive drivers.These findings may provide some new insights on the development of connected vehicle technologies in urban areas.

garagesPGISconnected vehiclesdriving behaviordriving styles

陈贺鹏、陈艳艳、李永行、陈雨菲、李四洋、郭继孚

展开 >

北京工业大学北京市交通工程重点实验室,北京 100124

中汽院智能网联科技有限公司,重庆 401120

北京交通发展研究院,北京 100073

停车场 停车信息诱导系统 网联车辆 驾驶行为 驾驶风格

2024

重庆理工大学学报
重庆理工大学

重庆理工大学学报

CSTPCD北大核心
影响因子:0.567
ISSN:1674-8425
年,卷(期):2024.38(19)