首页|遥感影像路径规划中A*算法优化研究

遥感影像路径规划中A*算法优化研究

扫码查看
针对在高分辨率遥感影像上进行路径规划时所面临的算法搜索范围大,效率低且转折点较多等问题,提出一种基于A*算法的全局路径规划算法.在原始A*算法的启发函数部分引入余弦函数,减少冗余节点的搜索过程,缩小算法搜索节点的范围,提升算法运行效率;设计拐点优化方案,减少规划路径中不必要的拐点数,提升路径规划结果的平滑性.为验证改进方法的有效性,在Matlab软件中进行仿真实验,分析原始A*算法和改进后A*算法的搜索节点范围与路径中拐点数量,并在遥感影像的二值地图中进行真实路径规划对比实验,分析路径长度与运行时间.实验数据表明,改进后算法的扩展节点减少30%以上,非必要拐点数减少35%以上,路径规划长度缩短10.1%,运行时间减少10.7%,提升了寻求最优路径的效率.
Optimizing the A*algorithm for remote sensing image path planning
To address the challenges when conducting path planning on high-resolution remote sensing images,such as the extensive search space,reduced efficiency,and increased number of turning points,this paper proposes a global path planning algorithm based on the A*algorithm.First,a cosine function is introduced into the heuristic function of the original A*algorithm to minimize the search process of redundant nodes and narrow down the search scope,thereby enhancing the algorithm's operational efficiency.Then,a turning point optimization scheme is designed to reduce unnecessary turning points in the planned path,improving the smoothness of the path planning results.Finally,to validate the effectiveness of the proposed algorithm,simulation experiments are conducted in Matlab software.Our study compares the search node scope and the number of turning points between the original A*algorithm and the enhanced one.Meanwhile,a comparative experiment is performed employing binary maps derived from remote sensing images to analyze the path length and execution time.Our experimental data indicate the enhanced algorithm reduces expansion nodes by over 30%and non-essential turning points by over 35%.Moreover,it shortens the path planning length by 15.5%and decreases the running time by 12.5%,demonstrating a higher efficiency in seeking the optimal paths.

A*algorithmgrid mapremote sensing image maproad extractionpath planning

谷玉海、崔悦、龙伊娜

展开 >

北京信息科技大学现代测控技术教育部重点实验室,北京 100192

北京信息科技大学机电工程学院,北京 100192

A*算法 栅格地图 遥感影像图 道路提取 路径规划

2024

重庆理工大学学报
重庆理工大学

重庆理工大学学报

CSTPCD北大核心
影响因子:0.567
ISSN:1674-8425
年,卷(期):2024.38(19)