首页|情感感知增强的多粒度过滤虚假新闻检测

情感感知增强的多粒度过滤虚假新闻检测

扫码查看
基于证据的虚假新闻检测需要从互联网中检索出多个证据以验证新闻的真实性.虽然目前的方法取得了良好的性能,但现有方法没有考虑从互联网检索到的无关证据对模型的负面影响,对证据文本中噪音信息的处理不够完善,这些方法忽略了新闻的情感极性对新闻真实性的影响.为了解决这些问题,提出了一个情感感知增强的多粒度过滤虚假新闻检测,称为 EMGFND(emotion polarity perception multi-granularity filter fake news detection).对新闻与证据进行图结构建模聚合新闻和证据文本信息,通过多粒度过滤获得精细的证据信息,通过新闻情感感知的注意力机制对新闻和证据进行交互.在Snopes和PolitiFact 2个公开数据集上进行了多次实验,结果表明:模型性能优于基线模型.
Emotion-aware enhanced multi-granularity filter fake news detection
Evidence-based fake news detection is a challenging task that requires retrieving multiple pieces of evidence from the Internet to verify the authenticity of the news.Although the current methods achieve fairly good performances,there are still some problems.For example,they fail to consider the negative impacts of irrelevant evidence retrieved from the Internet on the model,and the processing of noise information in evidence text needs improving.Moreover,they ignore the impact of emotional polarity of news on the authenticity of news.To address these problems,this paper proposes an emotion-aware enhanced multi-granularity filter fake news detection,called EMGFND.First,the text information of news and evidence is aggregated through the graph structure modeling.Fine evidence information is then obtained through multi-granularity filtering.Finally,the news and evidence are interacted through the news emotion-aware attention mechanism.Several experiments are conducted on two public datasets(Snopes and PolitiFact).Our experimental results show the proposed model performs better than the baseline model.

fake news detectiongraph neural networksentiment analysistext classificationgraph structure learning

李潇可、朱小飞

展开 >

重庆理工大学计算机科学与工程学院,重庆 400054

虚假新闻检测 图神经网络 情感分析 文本分类 图结构学习

2024

重庆理工大学学报
重庆理工大学

重庆理工大学学报

CSTPCD北大核心
影响因子:0.567
ISSN:1674-8425
年,卷(期):2024.38(19)