首页|MF-TLID:一种多特征融合输电线覆冰图像去噪方法

MF-TLID:一种多特征融合输电线覆冰图像去噪方法

扫码查看
针对基于图像对线缆覆冰状态进行监测过程中图像存在噪声的问题,提出了一种多特征融合输电线覆冰图像去噪方法.该方法采用残差注意力融合模块、源特征融合模块和特征增强模块.在残差注意力融合模块中采用级联残差结构和混合注意力模块,既有助于特征信息映射,又能增强特征信息表达;在网络不同特征层中融合源特征,保留图像的低频信息,有利于提升图像的清晰度和真实感;在特征增强模块中同时结合局部和全局特征,通过特征注意力加权学习有效特征向量表示,提高模型去噪能力;创新性地提出像素损失和感知损失的联合损失函数,同时考虑像素级别的误差和感知质量的提升.在输电线覆冰数据集上高斯噪声标准差分别为10~40、20~50和30~60,PSNR 和 SSIM 分别达到了 {31.015 dB、29.262 dB、27.717 dB}和{ 0.956、0.943、0.930}.结果表明,该算法的性能优于主流去噪方法,具有更强的抑噪能力和抗干扰性.
An ice-covered transmission line image denoising method fused with multiple features
To address the image noise in monitoring the ice-covered state of transmission lines based on images,this paper proposes an ice-covered transmission line image denoising method fused with multiple features(MF-TLID).The algorithm consists of residual attention fusion module,source feature fusion module and feature enhancement module.The cascaded residual structure and hybrid attention are employed in the residual attention fusion module,which not only contributes to feature information mapping but also enhances the expression of feature information.The source features are fused in different feature layers of the network to retain the low-frequency information of the images,which helps improve the clarity of the image.In the feature enhancement module,both local and global features are combined,and the effective feature vector representation is learned by the feature attention weighting to improve the model removal ability.We propose a joint loss function of Charbonnier loss and Perceptual Loss,taking into account the error of pixel level and the improvement of perceptual quality.On the transmission line icing dataset,the standard deviation of Gaussian noises are between 10-40,20-50 and 30-60,PSNR and SSIM reaches {31.015 dB,29.262 dB,27.717 dB } and {0.956,0.943,0.930} respectively.Our results indicate the proposed method performs better than the mainstream denoising methods,showing stronger noise suppression ability and robustness.

ice-covered transmission lineimage denoisingfeature fusionattention mechanismjoint loss function

张宇、窦银科、赵亮亮、焦阳阳、郭栋梁

展开 >

太原理工大学电气与动力工程学院,太原 030024

太原工业学院自动化系,太原 030008

山西省能源互联网研究院,太原 030032

煤电清洁智能控制教育部重点实验室,太原 030024

展开 >

输电线覆冰 图像去噪 特征融合 注意力机制 联合损失函数

2024

重庆理工大学学报
重庆理工大学

重庆理工大学学报

CSTPCD北大核心
影响因子:0.567
ISSN:1674-8425
年,卷(期):2024.38(19)