首页|面向多类型干扰的验证码目标识别算法研究

面向多类型干扰的验证码目标识别算法研究

扫码查看
验证码是一种用来区分计算机与人类的技术,以避免出现自动化程序自动注册、登录、恶意投票、恶意尝试密码等安全问题.而验证码识别技术研究可以使人们及时发现和改正验证码的缺点,对加强网络安全性有着重要的意义.通过对验证码识别算法的研究,设计了验证码识别系统,分别以模板匹配、Hu不变矩和深度学习3种算法对验证码图像进行处理识别,最终对带有多类型干扰的验证码分别得到识别结果.结果表明,前2种验证码算法的识别准确率分别为60.3%、66.0%,而基于深度学习算法中2种形式的识别准确率分别为87.7%和95.58%,尤其在线干扰和混合干扰等复杂干扰方面,识别准确率的提高尤为突出,表现出深度学习算法应用于多类型干扰验证码识别的可行性.
Research on verification code target recognition algorithm for multi-type interference
Verification code is a technology employed to differentiate computers and humans so as to avoid security issues such as automated program registration,login,malicious voting,and malicious password spraying.We aim to find and correct the shortcomings of verification code in time,which has important significance for improving network security.Based on the research on the verification code recognition algorithm,this paper designs a verification code recognition system,employing template matching,Hu invariant moment and deep learning algorithms to process and recognize the verification code image,and finally obtains recognition results for the verification code with multiple types of interference.Our results show the recognition accuracy of the first two verification code algorithms is 60.3%and 66.0%respectively,while that of the two forms of the deep learning algorithm is 87.7%and 95.58%.In the complex interference such as online interference and mixed interference,the recognition accuracy is markedly improved,demonstrating the feasibility of deep learning algorithm on multi-type interference verification code recognition.

verification codeimage processingmulti-type interferencerecognition algorithmdeep learning

程瑶、龚奥、王玉菡

展开 >

重庆理工大学机械工程学院,重庆 400054

验证码 图像处理 多类型干扰 识别算法 深度学习

2024

重庆理工大学学报
重庆理工大学

重庆理工大学学报

CSTPCD北大核心
影响因子:0.567
ISSN:1674-8425
年,卷(期):2024.38(19)