首页|混合特征筛选与分时Stacking的无地表辐照度光伏出力预测

混合特征筛选与分时Stacking的无地表辐照度光伏出力预测

扫码查看
针对国内太阳辐射观测站少,地表太阳辐射资料缺乏,导致难以精确地预测光伏发电功率的问题,提出一种无地表辐照度的预测方法.首先在原始数据上进行特征增广,并提出对数据进行逐时划分的思想,以进一步增强重要特征的相关性;其次,提出D-S证据理论对多种特征评分方法进行综合评分,以n比值法确定阈值实现对特征的筛选;最后,提出交叉验证方法以及对输入层进行Box-Cox正态变换实现对Stacking模型的改进,并对划分的样本集进行整合预测.实例分析表明,所提方法在所选预测日的准确率(CR)和合格率(QR)分别为0.948、1.000,相比未对数据进行处理的方法分别提升16.5%和20.3%,具有良好的预测精度,满足光伏出力预测的精度需求.
Synthetic feature selection and time-division stacking for photovoltaic output forecast without surface solar radiation information
Solar radiation observatories are few and lacks surface solar radiance(SSR)information nationwide,thus making it difficult to accurately predict the photovoltaic power output.Given this,this paper proposes a method of prediction without SSR.First,the feature augmentation on the original data is performed,and the idea of time-division of the data is proposed to further enhance the relevance of important features.Then,the D-S evidence theory is proposed to synthesize the score of multiple feature scoring methods,and the n-ratio method is employed to determine the threshold value to realize the dispatching of features.Finally,the cross-validation method is proposed as well as the Box-Cox normal transformation of the input layer to realize the improvement of the Stacking model,and the integrated prediction of the segmented sample set.Our results show the accuracy(CR)and qualification rate(QR)on the selected prediction days are 0.948 and 1.000 respectively,which are 16.5%and 20.3%higher than those of the unprocessed method,delivering fairly good prediction performances and satisfying the requirements of PV output prediction.

solar radiationPV power forecastfeature augmentationD-S evidence theoryBox-Cox normal transformationtime-division prediction

杨家豪、张莲、杨玉洁、梁法政

展开 >

重庆理工大学电气与电子工程学院,重庆 400054

太阳辐射 光伏功率预测 特征增广 D-S证据理论 Box-Cox正态变换 分时预测

2024

重庆理工大学学报
重庆理工大学

重庆理工大学学报

CSTPCD北大核心
影响因子:0.567
ISSN:1674-8425
年,卷(期):2024.38(19)