首页|虚拟道路激励下某双叉臂悬架模态及单轴疲劳性能分析

虚拟道路激励下某双叉臂悬架模态及单轴疲劳性能分析

扫码查看
通过网格划分建立上支臂有限元模型,对某双叉臂悬架上支臂疲劳性能进行探究.模拟强化耐久路况,建立等效虚拟道路,生成载荷时序激励信号.建立多体动力学刚柔耦合系统模型,并进行多体动力学仿真分析.通过对上支臂进行有限元分析,得到上支臂7-12阶固有频率及振型位置,模态频率远高于发动机怠速振动频率,可避免共振发生.发现上支臂应力分布较为均匀,最大应力区域为上支臂与转向节连接位置球铰处.通过Miner疲劳损伤累计法则,得到上支臂疲劳耐久特性.发现最大损伤位置位于与转向节连接区域,最小循环疲劳周期满足工程实际要求.
Analysis of modal and uniaxial fatigue performance of the upper swing arm of a double wishbone suspension based on virtual road excitation
Double wishbone suspension,one of the important structural types in automotive chassis suspension systems and accurately positioned through multiple parameters,has higher stiffness and torsional strength.Due to its unequal length fork arms,it absorbs the lateral force brought by the tire,achieves good lateral support,and improves turning performances.When the wheels move up and down simultaneously,they can automatically change the camber angle,thereby reducing tire wear,better adapting to the road surface,achieving larger tire contact area and better adhesion.While excellent handling experience is guaranteed,comfort should also be thoroughly considered.Research on fatigue durability suggests that attempts to scan the road surface point cloud CRG model of the test field were made in the early years.Excitation signals for road condition simulation are generated and loaded into the finite element system for analysis.Thus,the corresponding component strength and fatigue design load are obtained.Currently,the research is focused on strength verification and durability analysis of the lower support arm in extreme working conditions such as emergency braking and actual load spectra to verify the accuracy of the results through simulation and dynamic stress testing.Virtual load and real load fatigue tests are conducted to optimize the design of stress concentration areas.A modal analysis reveals the double wishbone structure exhibits resonance at the excitation frequency.Therefore,finite element pre-analysis is employed to preliminarily determine the modal frequency range and vibration mode,and hammer impact modal tests are conducted to compare and confirm the accuracy of the finite element model,providing reference for further vibration reduction structure design and dynamic response solving.This paper mainly explores the fatigue performance of the upper support arm of a double wishbone suspension,and builds a finite element model of the upper support arm through mesh partitioning.Durable road conditions are simulated and enhanced,equivalent virtual roads are built,and load timing excitation signals are generated.A multi-body dynamics rigid flexible coupling system model is built and multi-body dynamics simulation analysis is conducted.Through a finite element analysis on the upper support arm,the 7-12 natural frequencies and vibration mode positions of the upper support arm are obtained.The modal frequency is markedly higher than the idle vibration frequency of the engine,helping avoid resonance.Meanwhile,the stress distribution on the upper support arm is relatively uniform,and the maximum stress area is at the ball joint where the upper support arm is connected to the steering joint.The fatigue durability characteristics of the upper support arm are obtained through the Miner fatigue damage accumulation rule.The maximum damage location is found in the area connected to the steering joint and the minimum cyclic fatigue cycle meets the actual engineering requirements.

double wishbone suspensionvirtual road loadfinite element analysisrigid flexible coupled multibody dynamicsfatigue durability

徐磊、张民安、杨秀丽

展开 >

长春汽车职业技术大学汽车运用学院,长春 130013

东北林业大学机电工程学院,哈尔滨 150040

双叉臂悬架 虚拟道路载荷 有限元分析 刚柔耦合多体动力学 疲劳耐久

2024

重庆理工大学学报
重庆理工大学

重庆理工大学学报

CSTPCD北大核心
影响因子:0.567
ISSN:1674-8425
年,卷(期):2024.38(21)