首页|火电厂故障诊断文本的实体抽取模型构建

火电厂故障诊断文本的实体抽取模型构建

扫码查看
针对火电厂故障诊断领域文本存在实体边界模糊、文本特征不够充分、模型识别效果不明显等问题,提出一种改进BERT-BiLSTM-CRF故障诊断领域文本实体识别模型.为了提高BERT模型在中文语境下的性能,对模型参数进行改进,使用对抗训练方法提高模型精度,使模型F1值提高0.020 6.对已构建的数据集进行实体命名识别实验,实验结果表明:改进BERT-BiLSTM-CRF实体识别模型在数据集上的F1值达到0.901 6,相较于其他模型F1值有所提升,验证了该模型的有效性.
Construction of entity extraction model for fault diagnosis text in thermal power plants
To address such issues as blurred entity boundaries,insufficient text features,and unremarkable model recognition effects in the field of fault diagnosis for thermal power plants,we propose a text entity recognition model based on improved BERT-BiLSTM-CRF for fault diagnosis.Entity naming recognition experiments are conducted on a newly built dataset.Our results indicate the entity recognition model based on the improved BERT-BiLSTM-CRF achieves an F1 score of 0.901 6,which is superior to those of other models,validating the effectiveness of our model.To enhance the performance of the BERT model in a Chinese context,model parameters are optimized,and adversarial training methods are employed to improve model accuracy,which is up by 0.020 6 in F1 score.

entity naming recognitionpre-trained language modelthermal power plantsfault diagnosisadversarial training

陈宏、王云博、穆思澎、陈阳

展开 >

郑州大学机械与动力工程学院,郑州 450001

哈密职业技术学院机电系,新疆哈密 839099

陕西科技大学阿尔斯特学院,西安 710016

实体命名识别 预训练语言模型 火电厂 故障诊断 对抗训练

2024

重庆理工大学学报
重庆理工大学

重庆理工大学学报

CSTPCD北大核心
影响因子:0.567
ISSN:1674-8425
年,卷(期):2024.38(21)