首页|改进线特征提取与匹配算法的点线视觉惯性SLAM研究

改进线特征提取与匹配算法的点线视觉惯性SLAM研究

扫码查看
针对目前融合点线特征的视觉惯性SLAM系统前端线特征提取与匹配过程中,传统线段检测算法因过度分割线段产生大量短线和割裂线段,增加了SLAM后端位姿估计的不确定性,以及使用基于描述符线特征匹配效率低制约了系统实时性等问题,提出了改进方法.在传统线段检测算法的基础上,采用短线抑制策略和自适应阈值线段合并策略改进算法提升提取线段的质量.基于光流跟踪点特征原理,提出了一种基于KLT光流跟踪线特征算法,提升线特征匹配的效率.利用不同场景的公开数据集进行对比验证实验,结果表明:改进的线段检测算法提升了线段检测的质量,基于KLT光流跟踪线特征算法显著提升了线段匹配速度,在保证定位精度的同时提升了SLAM系统的实时性.
Improvement of line feature extraction and matching based on visual-inertial SLAM with point and line features
For the frontend line feature extraction and matching process in current visual-inertial SLAM systems fusing point and line features,the traditional line segment detection algorithm produces a large number of short lines and fragmented line segments due to over-segmentation,increasing the uncertainty of pose estimation in the backend optimization.Meanwhile,the efficiency of line feature matching using descriptors is relatively low,limiting the system's real-time performance.To address these issues,we propose an improved method.First,an improved line segment detection algorithm is proposed based on the traditional line segment detection algorithm,adopting a short line suppression strategy and an adaptive threshold line merging strategy to enhance the quality of extracted line segments.Second,based on the principle of KLT optical flow point feature tracking,a line feature tracking algorithm using KLT optical flow is proposed to improve the efficiency of line feature matching.Finally,comparative validation experiments are conducted on publicly available datasets of different scenes.Our results demonstrate our improved line segment detection algorithm enhances the quality of line segment detection.Moreover,our line feature tracking algorithm using KLT optical flow significantly improves the speed of line segment matching.The improvements ensure positioning accuracy and enhance the real-time performance of the visual-inertial SLAM system.

SLAMline featureline segment detectionoptical flow trackingline feature matching

刘睿、杜超斐、丁军、黄霞、金辉

展开 >

重庆理工大学 机械工程学院,重庆 400054

SLAM 线特征 线段检测 光流跟踪 线特征匹配

2024

重庆理工大学学报
重庆理工大学

重庆理工大学学报

CSTPCD北大核心
影响因子:0.567
ISSN:1674-8425
年,卷(期):2024.38(23)