首页|LiteRevNet:一种轻量级工业图像实例分割算法

LiteRevNet:一种轻量级工业图像实例分割算法

扫码查看
为解决工业激光切缝视觉检测中实例分割算法精度不足、参数量与计算量大等问题,提出了一种轻量级工业图像实例分割算法(LiteRevNet).在卷积操作中加入坐标信息,结合多尺度卷积核构建高效空间感知卷积,增强模型的特征提取能力.在此基础上,基于可逆列网络和高效空间感知卷积设计轻量化的主干网络,保持检测精度的同时,降低计算量和参数量.设计同时具有空间和通道感知能力的金字塔坐标通道注意力,加强网络模型对目标区域的关注度.构建轻量化三边原型掩码分支,大幅度降低模型的计算量.在自建激光切缝数据集上的实验结果表明,所提算法边框mAP50 和掩码mAP50 分别达到了 96.7%和 95.1%,检测速度可达 200 FPS,参数量和计算量比YOLOv8s-Seg分别下降15.4%和38.7%.
LiteRevNet:a lightweight algorithm for industrial image instance segmentation
To address the low accuracy in instance segmentation algorithms and the high number of parameters and computational demands in industrial laser cutting seam visual inspection,we propose a lightweight industrial image instance segmentation algorithm(LiteRevNet).First,coordinate information is incorporated into convolution operations,combined with multi-scale convolution kernels to build efficient space-aware convolutions,enhancing the model's feature extraction capabilities.Then,a lightweight backbone network is designed using reversible column networks and efficient space-aware convolutions,maintaining detection accuracy while reducing the amount of computation and parameters.Next,a pyramid coordinate channel attention mechanism with both spatial and channel awareness is designed to increase the network model's focus on target areas.Finally,a lightweight trilateral prototype mask branch is built,significantly reducing the model's computational load.Our results on a self-built laser cutting seam dataset show our proposed algorithm achieves 96.7%in bounding box mAP50 and 95.1%in mask mAP50 with a detection speed of up to 200 FPS.The number of parameters and computational load are down by 15.4%and 38.7%respectively compared with those of YOLOv8s-Seg.

industrial visioninstance segmentationattention mechanismYOLOv8slight weight

朱凌云、杨小洪

展开 >

重庆理工大学 计算机科学与工程学院,重庆 400054

工业视觉 实例分割 注意力机制 YOLOv8s 轻量化

2024

重庆理工大学学报
重庆理工大学

重庆理工大学学报

CSTPCD北大核心
影响因子:0.567
ISSN:1674-8425
年,卷(期):2024.38(23)