首页|无人机视角下光流估计的动态目标跟踪方法

无人机视角下光流估计的动态目标跟踪方法

扫码查看
目前,大多数跟踪器都聚焦于构建目标的外观特征模型,不考虑动态目标的运动信息,而基于学习的光流估计方法在描述外观特征的同时可估计动态目标位移的运动信息.因此,将Transformer与光流估计相结合,提出紧凑型特征编码器,在全局上下文信息之间通过自注意力机制建立相关性,强化区域特征.此外,提出交叉型解码器进行流回归,将迭代细化和交叉注意力机制相结合,去除了大量的细化步骤,提高处理速度,通过上采样器实现无人机视角下的高特征分辨率光流估计.实验结果表明:所提方法在精确度和鲁棒性方面具有优越性.
Dynamic target tracking method for optical flow estimation in unmanned aerial vehicle perspective
Unmanned Aerial Vehicle(UAV)dynamic target tracking is one of the critical technologies in the search and rescue field and environmental monitoring,etc.How to accurately discriminate and capture the motion information of the moving targets is of critical importance.Currently,most trackers focus on modeling the appearance features of the targets without considering their motion information.Learning-based optical flow estimation methods estimate the motion information of moving target displacement while describing the appearance features.Therefore,we combine Transformer with optical flow estimation to propose a compact feature encoder that establishes correlation between global contextual information and reinforces regional features through a self-attention mechanism.Moreover,a cross decoder is proposed to perform flow regression,which combines iterative refinement and cross-attention mechanism to remove a large number of refinement steps and improve the processing speed.Through the up-sampler,the optical flow estimation is achieved with high feature resolution from UAV viewpoint.Our experimental results show our method achieves higher accuracy and robustness compared with those of other advanced methods.

moving target trackingoptical flow estimationattention mechanismmotion information

刘鹏、王广玮

展开 >

贵州大学 机械工程学院,贵阳 550025

目标跟踪 光流估计 注意力机制 运动信息

2024

重庆理工大学学报
重庆理工大学

重庆理工大学学报

CSTPCD北大核心
影响因子:0.567
ISSN:1674-8425
年,卷(期):2024.38(23)