首页|基于模糊认知图的老旧小区改造协同治理机理研究

基于模糊认知图的老旧小区改造协同治理机理研究

扫码查看
老旧小区改造实践中政府、企业、居民等多方主体协同不足以成为掣肘改造推进的关键问题。已有研究以识别与定性分析部分协同影响因素为主,从系统视角分析协同影响要素间相互作用机理的定量化研究较少;尤其缺乏定量化测度与分析多个协同因素结构与功能的分析工具。本研究首先基于协同治理理论,识别并搭建了以"驱动—过程—结果"三类协同要素所构成的分析框架;创新引入模糊认知图法构建老旧小区改造协同治理FCM模型;并通过对若干模型中心性指标的静态与动态分析模拟,从多视角分析老旧小区改造情境下影响多主体协同达成的关键因素及其作用机理。分析结果解释了改造主体间协同不足原因,同时验证了 FCM方法在相关研究中的适用性。
Research on the mechanism of collaborative governance of old neighborhood renovation based on fuzzy cognitive map
The lack of collaboration among government,enterprises,residents other parties has become a key problem in the renovation of old neighborhood.The existing researches mainly identify and qualitatively analyzes some collaboration influencing factors.Few quantitative studies analyze the interaction mechanism of collaborative influencing factors from the perspective of the system.In particular,analytical tools to quantify and analyze the structure and function of multiple collaboration factorsare lacking.Based on the collaborative governance theory,this study first identifies and builds an analysis framework composed of three types of collaborative factors:"Drive-Process-Result".Innovative Introduction of Fuzzy Cognitive Mapping Method to Construct a Collaborative Governance FCM Model for Older Neighborhood Renovation.Through the static analysisand dynamic simulation of several model centrality indicators,the key factors affecting multiple subject collaborative achievements under old neighborhoodrenovation and their mechanism were analyzed from multiple perspectives.The analysis results explain the reasons for the lack of inter subjective collaboration and verify the applicability of the FCM method in related research.

old neighborhoodrenovationcollaborative governance mechanismfuzzy cognitive map

丁锐、樊泓、张秀智、王敬

展开 >

北京建筑大学城市经济与管理学院,北京 100044

农业农村部工程建设服务中心绩效评价二处,北京 100081

中国人民大学公共管理学院,北京 100872

自然资源部国土整治中心土地复垦部,北京 100035

展开 >

老旧小区改造 协同治理 模糊认知图

教育部人文社会科学研究规划基金项目

23YJA630020

2024

重庆社会科学
重庆市社会科学界联合会

重庆社会科学

CHSSCD北大核心
影响因子:0.627
ISSN:1673-0186
年,卷(期):2024.(7)