首页|生成式人工智能的数据风险及其法律规制

生成式人工智能的数据风险及其法律规制

扫码查看
生成式人工智能在引领技术变革的同时也引发了诸多法律风险.根据生成式人工智能的运行机理,可以发现其中存在四大类数据安全风险,其主要原因在于算法高度信任对法益保护的冲击、技术演变中科技伦理规范的缺失以及用户数据主体权利保障不足等.针对生成式人工智能在数据输入阶段的数据源合规风险,研发企业内部应制定具有可操作性的数据合规计划,并在合规计划中制定详细具体的风险规制措施,强化企业合规经营;与此同时,通过多种措施积极响应用户对于数据主体权利的请求,确保模型训练数据来源合法合规.针对生成式人工智能在模型处理阶段的算法黑箱与算法偏见风险,应加大监管力度,重点关注算法的安全性与公平性,积极推进并完善相关立法,细化算法备案和算法解释义务,提高算法技术透明度,落实算法主体责任.针对生成式人工智能在内容输出阶段的数据滥用风险,应优化监管机制,实现全链条合法性监管,完善科研伦理规范并予以实质审查,引领技术向善,实现科技向善治理.针对生成式人工智能在数据存储阶段的数据泄漏风险,应通过技术与管理制度相结合的方式进行全方位规制,严格控制数据共享范围并贯彻数据分级分类保护,及时有效地防范数据泄露风险.
Data risk of generative artificial intelligence and its legal regulation
The emergence of ChatGPT has stirred up a new round of development in generative artificial intelligence,leading to technological change while also triggering many legal risks.According to the operation mechanism of generative AI,four major types of data security risks can be found,mainly due to the impact of high trust in algorithms on the pro-tection of legal interests,the lack of scientific and technological ethical norms in the evolution of the technology,and in-sufficient protection of users'data subject rights.For the data source compliance risk of generative AI in the data input stage,R&D enterprises should formulate an operable data compliance plan,and formulate detailed and specific risk con-trol measures in the compliance plan to strengthen the compliance operation of the enterprise,and at the same time,ac-tively respond to the user's request for the rights of the data subject through a variety of measures,so as to ensure that the source of the model training data is legal and compliant.Regarding the risk of algorithmic black box and algorithmic bias in the model processing stage of generative AI,we should increase supervision,focus on the safety and fairness of algorithms,actively promote and improve relevant legislation,refine algorithmic filing and algorithmic interpretation obli-gations,improve algorithmic technology transparency,and implement algorithmic subject responsibility.In response to the data abuse risks in the content output stage of generative artificial intelligence,we should optimize the regulatory mechanism to achieve full-chain legitimacy supervision,improve scientific research ethics norms and conduct substantive review,lead technology to goodness,and achieve good governance of science and technology.In response to the data leakage risks in the data storage stage of generative artificial intelligence,we should adopt a comprehensive regulation ap-proach combining technology and management systems to strictly control the scope of data sharing and implement data classification and protection,and timely and effectively prevent data leakage risks.

intelligent algorithmgenerative artificial intelligencedata risklegal regulation

刘辉、雷崎山

展开 >

湖南大学法学院,湖南长沙 410001

智能算法 生成式人工智能 数据风险 法律规制

国家社科基金项目

21BFX122

2024

重庆邮电大学学报(社会科学版)
重庆邮电大学

重庆邮电大学学报(社会科学版)

CHSSCD
影响因子:0.719
ISSN:1673-8268
年,卷(期):2024.36(4)
  • 1
  • 20