首页|基于自动深度学习盾构掘进姿态预测与控制

基于自动深度学习盾构掘进姿态预测与控制

扫码查看
提出了基于自动深度学习(AutoDL)算法和多目标优化算法的结合可实现数据驱动的姿态偏差控制指导,用于盾构掘进姿态的预测与控制,以解决现有盾构掘进姿态预测中所面临的执行难度高、成本高、效率低等问题,可用于自动精准地预测盾构掘进姿态随着工程进展的动态变化趋势,并针对盾构机施工状态执行多目标优化算法,快速自动搜寻最优策略,实时调整合适的盾构操作参数,减少对于现场操作人员经验和主观判断的依赖.以上海市天然气主干管网崇明岛-长兴岛-浦东新区五号沟LNG站管道工程隧道A线工程为例,展示该算法框架的优越性.研究结果有助于降低深度学习进入盾构智能控制领域的门槛,推动智能盾构发展.
Prediction and Control of Shield Tunneling Attitude Based on Automatic Deep Learning
The combination of automatic deep learning(AutoDL)algorithm and multi-objective optimization algorithm is proposed to realize the data-driven attitude deviation control guidance,which is used for the prediction and control of shield tunneling attitude in order to solve the problems of high execution difficulty,high cost and low efficiency faced in the prediction of the existing shield tunneling attitude,and can be used to automatically and accurately predict the dynamic change trend of shield tunneling attitude with the engineering progress.The multi-objective optimization algorithm is implemented according to the construction state of shield tunneling machine quickly and automatically to search for the optimum strategy,adjust the suitable shield tunneling parameters in real time and reduce the reliance on field operator experience and subjective judgment.Taking the Tunnel Line A Project in Chongming Island-Changxing Island-Pudong New District No.5 Ditch LNG Station Pipeline Project of the natural gas main pipeline network in Shanghai as an example,the superiority of the algorithm framework is demonstrated.The research results are helpful to lower the threshold for deep learning to enter the field of intelligent shield control and promote the development of intelligent shield.

automatic deep learningtime windowshield attitudeparticle swarm optimization algorithmmulti-objective optimization algorithm

秦灏

展开 >

上海建工集团股份有限公司,上海市 200080

自动深度学习 时间窗 盾构姿态 粒子群优化算法 多目标优化算法

2024

城市道桥与防洪
上海市政工程设计研究院

城市道桥与防洪

影响因子:0.477
ISSN:1009-7716
年,卷(期):2024.(2)
  • 4