首页|基于上市公司数据的中国城市网络空间结构

基于上市公司数据的中国城市网络空间结构

扫码查看
利用2014年A股上市公司总部-子公司组织网络数据,采用GIS、Ucinet等网络分析工具,构建了中国286个地级市以上城市网络,并进行综合测度,揭示了企业组织视角下城市网络空间结构的复杂性特征.研究表明:中国上市公司总部的区位分布呈现出较为明显的空间集聚趋势,主要分布在东部沿海的长三角、珠三角、京津冀和山东半岛城市群以及中部的长江中游城市群和西部的成渝经济区等六大城市群内;基于城市网络节点的总联系量对节点进行分级,北京、上海和深圳是全国性的网络中心;城市网络联系量呈现出较为明显的东密西疏、东强西弱的空间梯度格局,其中在高值联系流上又凸显出一个三棱锥体的“钻石”结构,京津、上海、深广和成渝分别为其4个顶点;不同等级的网络联系具有不同的空间异质性,网络的空间组织以核心节点的中心辐射连接与局部地区的近邻交互连接为主;整个网络符合无标度网络特性,并呈现“小世界”网络特征.
SPATIAL STRUCTURE OF CHINESE INTERCITY NETWORK BASED ON THE DATA OF LISTED COMPANIES
Based on the network data of A-share listed companies headquarters and its subsidiaries,this paper constructs the urban network covering 286 prefecture-level cities in China and using network analysis tool like GIS and Ucinet.After a comprehensive measuring,this article reveals the complexity of urban network space structure from the perspective of the enterprise organization.The result shows that:The location distribution of headquarters of listed companies in China presents a fairly obvious spatial agglomeration trend toward Yangtze River Delta Region,Pearl River Delta Region,Beijing-Tianjin-Hebei Region,and Shandong Peninsula urban agglomeration along the eastern coastal region of China,the urban agglomeration in the mid-stream region of Yangtze River Delta Region,and Chengdu-Chongqing Economic Area in the western region of China;all network nodes are graded according to the total amount of communications,so Beijing,Shanghai and Shenzhen are taken as the national network centers;it shows an obvious spatial gradient pattern that the east is dense and strong while the west is sparse and weak in the city network connection.And the high-value connection flow forms a diamond structure with Beijing-Tianjin,Shanghai,Shenzhen-Guangzhou,and Chengdu-Chongqing as the four vertices;different levels of network connection show different spatial heterogeneity.The spatial organizations of network connection are mainly the central radiation from the core node and the adjacent link in local areas;the entire network shows the characteristic of scale-free network,and the "small world" network feature is presented.

urban networkconnection flowcomplexity analysislisted companyChina

蒋小荣、杨永春、汪胜兰、王梅梅、杨亚斌

展开 >

兰州大学资源环境学院

兰州财经大学陇桥学院

甘肃省工业与民用建筑设计院有限公司

城市网络 联系流 复杂性分析 上市公司 中国

国家自然科学基金

41571155

2017

城市规划
中国城市规划学会

城市规划

CSTPCDCSSCICSCDCHSSCD北大核心
影响因子:2.515
ISSN:1002-1329
年,卷(期):2017.41(6)
  • 28
  • 8