首页|基于动态步长梯度下降的EKF-SLAM改进算法

基于动态步长梯度下降的EKF-SLAM改进算法

扫码查看
现代重型货物运输所处环境日益复杂,要求AGV-SLAM算法具备更高的鲁棒性和准确性以实现高精确装卸作业.因此,本文提出基于动态步长梯度下降的改进EKF-SLAM算法.首先对AGV行进过程建模分析,分别建立AGV的运动学模型和观测模型.考虑到EKF-SLAM算法在状态估计时可能引入的截断误差问题,本文针对AGV自身位姿和环境特征位置预测估计精确度较低的问题,提出了一种改进算法.该算法引入梯度下降算法,并结合动态步长策略,步长的取值与AGV系统的前进速度、采样时间正相关.仿真结果表明,该改进算法相较于标准EKF-SLAM算法,在停车场数据集下能够快速生成更优的估计路标和路径,从而在一定程度上提高了传统算法的鲁棒性和准确性,具有行业应用的参考价值.
Improved EKF-SLAM Algorithm Based on Dynamic Step-size Gradient Descent
The increasingly complex environment for modern heavy-duty goods transportation requires AGV-SLAM algorithms to have higher robustness and accuracy in order to achieve precise loading and unloading operations. Therefore, this paper proposes an improved EKF-SLAM algorithm based on dynamic step-size gradient descent. Firstly, the AGV motion process is modeled and analyzed, and the kinematic and observation models of the AGV are established. Considering the truncation error problem that may be introduced by the EKF-SLAM algorithm during state estimation, this paper proposes an improved algorithm to address the issue of low accuracy in the prediction estimation of AGV's own pose and environmental feature positions. The improved algorithm introduces gradient descent algorithm and dynamic step-size strategy, where the step-size is positively correlated with the AGV's forward speed and sampling time. Simulation results show that compared with the standard EKF-SLAM algorithm, the improved algorithm can quickly generate better-estimated landmarks and paths in the parking lot data set, thus improving the robustness and accuracy of traditional algorithms to a certain extent, and carries reference value for applications in the industry .

simultaneous localization and mappingdynamic step sizeextended kalman filterparking lot datasetAGV

索会恒、魏博思、饶睿、胡强、钟璟、杨腾胜、吴剑

展开 >

南昌航空大学信息工程学院,南昌 330063

同时定位与地图创建 动态步长 扩展卡尔曼滤波 停车场数据集 AGV

南昌航空大学研究生创新专项南昌航空大学研究生创新专项

YC2021-S679YC2021-037

2024

常熟理工学院学报
常熟理工学院

常熟理工学院学报

影响因子:0.206
ISSN:1008-2794
年,卷(期):2024.38(2)
  • 17