首页|半群CSPn,k的秩和k方幂等元秩

半群CSPn,k的秩和k方幂等元秩

扫码查看
设自然数n≥3,Pn和Sn是有限链Xn上的部分变换半群和对称群.对任意的正整数k满足3≤k≤n,令(Ck=〈gk〉)是Xn上的k-局部循环群且(CSPn,k=Ck∪(Pn\Sn)),易证CSPn,k是部分变换半群Pn的子半群.通过分析半群CSPn,k的格林关系和幂等元,获得了半群CSPn,k的极小生成集和k方幂等元极小生成集,进一步确定了半群CSPn,k的秩和k方幂等元秩.
On the Rank and the k-Idempotent Rank of the Semigroup CSPn,k
Let Pn and Sn be partial transformation semigroup and symmetry group on a finite chain Xn , respectively, if natural number n≥3. Let (Ck =〈gk〉) be a k-locally cyclic group on Xn , and let (CSPn,k=Ck∪(Pn\Sn)), if for any positive integer k such that 3≤k ≤n. It is easy to prove that CSPn,k is a subsemigroup of the partial transformation semigroup Pn. Through an analysis of the Green's relation and the idempotent of the semigroup CSPn,k ,the minimal generating set and the minimal generating set of k-idempotent are obtained. Further, the rank and the k-idempotent rank of the semigroup CSPn,k is further confirmed.

partial transformation semigroupk-locally cyclic group(k-idempotent) minimal generating set(k-idempotent) rank

龙如兰、张梁松、罗永贵

展开 >

贵州师范大学数学科学学院,贵阳 550025

部分变换半群 k-局部循环群 (k方幂等元)极小生成集 (k方幂等元)秩

贵州师范大学学术基金项目贵州师范大学学术基金项目

黔师新苗[2021]B08号0522040/11904

2024

常熟理工学院学报
常熟理工学院

常熟理工学院学报

影响因子:0.206
ISSN:1008-2794
年,卷(期):2024.38(2)
  • 8