首页|面向人群出行分布的机器学习分析框架构建研究

面向人群出行分布的机器学习分析框架构建研究

扫码查看
提出一种通用的机器学习分析框架用于预测和分析人群出行规律.首先,基于重力模型、辐射模型和PWO模型选取可解释的关键影响因素作为模型的输入变量,构建多模型比选的机器学习分析框架以提升模型的泛化能力.然后,利用宁波市1km栅格尺度数据和街镇尺度数据、东京都市圈交通普查区数据和区县数据、纽约市人口普查区数据和美国郡县数据、伦敦市人口普查区数据和英格兰郡县数据作为案例,检验分析框架的预测性能和泛化能力.结果表明,相较于经典理论模型,机器学习分析框架取得了更好的预测性能和泛化能力,其在不同场景下的平均预测精度较重力模型、辐射模型和PWO模型分别提高了96%,98%和54%.案例研究结果证明出行距离、起终点覆盖的人口数量在解释人群出行规律上的普适性,且终点人口数量的重要性显著高于其他因素.同时,行政边界的影响将随着分析尺度的增加而弱化,起点人口数量的作用机制在经济文化差异较大的区域之间表现迥异.这些发现为深入理解人群出行规律的复杂性提供了宝贵启示.
Machine Learning Analysis Framework for Passenger Distribution
This paper proposes a generalized machine-learning framework for predicting and analyzing travel patterns.Firstly,based on the gravity model,radiation model,and PWO model,the interpretable key influencing factors are selected as input variables for the model,and a multi-model comparison machine learning analysis framework is constructed to improve the generalization ability of the model.Further-more,the predictive performance and generalization ability of the analytical framework is tested using 1km grid scale data and street town scale data from Ningbo,transportation census area data and district da-ta from the Tokyo metropolitan area,census area data,and national county data from New York in the Unit-ed States,and census area data and county data from London in the United Kingdom.The results show that compared to the classical theoretical models,the machine learning-based analysis framework achieves bet-ter prediction performance and generalization capability.Its average prediction accuracy in different scenar-ios is improved by 96%,98%,and 54%compared to the gravity model,the radiation model,and the PWO model,respectively.Finally,the results of the case studies demonstrate the generalizability of travel dis-tance,population coverage at the origin and destination of travel in explaining population travel patterns,and the importance of the number of travel destination populations is significantly higher than other fac-tors.Meanwhile,the analysis shows that the influence of administrative boundaries will weaken with the increase of the analysis scale,and the mechanism of the origin population size will vary greatly among re-gions with significant economic and cultural differences.These findings provide valuable insights for a deeper understanding of the complexity of travel patterns.

travel distribution modelmobilitymachine learninginfluencing factorstravel patterns

洪智勇、魏贺、洪锋、贺宁、李朋州

展开 >

宁波市规划设计研究院,浙江宁波 315042

北京市城市规划设计研究院,北京 100045

浙江华展研究设计院股份有限公司,浙江宁波 315000

出行分布模型 人员流动性 机器学习 影响因素 出行规律

浙江省自然资源厅2022年度科技项目

2022-17

2024

城市交通
建设部城市交通工程技术中心 中国城市规划设计研究院

城市交通

CSTPCD
影响因子:1.037
ISSN:1672-5328
年,卷(期):2024.22(4)