首页|数据要素市场化与新质生产力发展——基于双重机器学习的因果推断

数据要素市场化与新质生产力发展——基于双重机器学习的因果推断

扫码查看
在构建数据要素市场化赋能新质生产力发展的理论框架基础上,以数据公共交易平台的建立为准自然实验,选取2011-2021年我国284个地级市的面板数据,基于双重机器学习方法分析其作用机制与调节机制.研究结果表明,数据要素市场化建设可有效赋能新质生产力发展.在异质性方面,数据要素市场化在高科教水平城市及一、二线城市中显著促进新质生产力发展,而在低科教水平和三线及以下城市中无明显驱动效应.在作用机制方面,数据要素市场化通过引导市场整合、优化要素配置、重构创新范式等机制驱动新质生产力水平提升.在调节机制方面,数据要素市场化通过产业升级转型、数字人才集聚与外资利用等渠道进一步激发数据要素的新质生产力促进效应.基于研究结论提出政策建议,即充分释放数据要素价值,为加快形成新质生产力提供有力支撑.
On the basis of constructing a theoretical framework that data factor marketization empowers the develop-ment of regional new-quality productivity,and quasi-natural experiments based on the establishment of a data public trading platform,panel data of 284 prefecture-level cities are selected from 2011-2021,and its mechanism of action and regulation is analyzed based on the dual machine learning method.The re-sults show that the construction of data factor marketization effec-tively empowers the development of regional new quality produc-tivity.In terms of heterogeneity,data factor marketization signif-icantly promotes the development of new-quality productivity in high science and education levels and first-and second-tier cities,while it has no significant driving effect in low science and education levels and cities below the third tier.In terms of the mechanism of action,data factor marketization drives the level of new quality productivity through the mechanisms of guid-ing market integration,optimizing factor allocation,and recon-structing innovation paradigms.In terms of the regulating mech-anism,data factor marketization stimulates the data factor multi-plier effect through channels such as industrial upgrading and transformation,digital talent gathering and foreign capital utili-zation level.Policy recommendations are then put forward to fully release the value of data factors and provide strong support for accelerating the formation of new quality productivity.

data elementsnew quality productivitydata trading platformDual Machine Learning

陆扬、王育宝

展开 >

西安财经大学

西安交通大学陕西经济研究中心

数据要素 新质生产力 数据交易平台 双重机器学习

国家社会科学基金重点项目国家社会科学基金青年项目

22AJY00622CJY017

2024

城市问题
北京市社会科学院

城市问题

CSTPCDCSSCICHSSCD北大核心
影响因子:1.27
ISSN:1002-2031
年,卷(期):2024.(7)