首页|非金属掺杂提升铂族金属电催化剂性能

非金属掺杂提升铂族金属电催化剂性能

扫码查看
铂族金属(PGM)催化剂被认为是用于能量转换和存储设备(如燃料电池和水电解器)的最佳催化剂之一,但活性和稳定性不足极大地限制了其商业化应用.近年来,非金属原子(氢、硼、碳、氮、磷和硫等)掺杂策略引起了广泛关注,该方法可以对铂族金属的精细电子和配位结构进行调控,从而优化铂族金属的电催化活性和稳定性.非金属掺杂具有独特的优势:首先,非金属的原子半径较小,可以进入铂族金属的间隙位点,为调节铂族金属的电子结构提供了更多的可能性;其次,掺杂的非金属会诱导强电荷转移,并与主体金属产生s,p-d杂化,这与金属-金属合金中的d-d轨道耦合不同;第三,非金属掺杂的铂族金属基催化剂由于具有较强的非金属-金属键,从而表现出较好的耐久性.本文详细探讨了非金属掺杂铂族金属催化剂的合成和应用,并揭示了非金属掺杂的催化机理和构效关系.本文总结了非金属掺杂铂族金属基催化剂在电催化领域的一些代表性进展,讨论了影响催化剂活性和稳定性的关键因素,并介绍了非金属掺杂改善铂族金属基催化剂性能的基本原理.探讨了非金属掺杂铂族金属基催化剂的表征技术和理论方法,其中包括可直接观测到非金属原子的先进成像技术以及原位表征方法,辅助以密度泛函理论以及分子动力学模拟等理论计算方法,以进一步揭示催化剂性能增强机制.详细列举了非金属掺杂铂族电催化剂的合成方法,从气相沉积、高温热解、湿化学合成到电化学原位合成,提供了详尽的合成方案,并提出了针对贵金属活性中心的非金属修饰策略,旨在为未来材料设计提供启示.概述了非金属掺杂铂族金属基催化剂在电催化中的应用,重点揭示了非金属掺杂带来的结构-性能构效关系.在活性方面,非金属掺杂可以从配体效应、应力效应、微应变等方面影响铂族金属的d带重心,从而影响活性位点与反应中间体的吸附,而这种影响作用也因每种非金属的电负性、原子半径、掺杂方式等不同而不同,可通过调控掺杂种类/方式实现精细调控;同时,非贵金属的协同效应可以增强对OH的吸附,抑制活性位点的毒化.在稳定性方面,非金属可以通过与金属形成稳定的金属-非金属键抑制金属的溶解,或者减弱金属与氧的相互作用,防止其被氧化;同时,非金属的掺入可以提高金属的功函数,提高其溶解电位,从而提升催化剂稳定性.最后,本文提出了该类电催化材料面临的机遇和挑战,其中包括:(1)开发更加可控的非金属掺杂策略;(2)更加深入地研究非金属掺杂带来的构效关系;(3)探索新的非金属掺杂催化剂,并进一步拓展到其他催化领域;(4)发展抑制非金属组分溶解的通用策略;(5)重视催化剂在器件层面的性能评估.综上,本文不仅为非金属掺杂贵金属基催化剂进一步的研究提供启示,还为深入理解催化、纳米材料的合成提供参考.
Enhancing the performance of platinum group metal-based electrocatalysts through nonmetallic element doping
Platinum group metal(PGM)catalysts have been well recognized as one of the best catalysts to-wards energy conversion and storage devices,such as fuel cells and water electrolyzers.Neverthe-less,their commercial applications are strictly limited by the unsatisfactory catalytic activity and stability.Recently,nonmetallic(H,B,C,N,P,S,etc.)atoms doping is explored to be an efficient strategy to optimize the catalytic activity and durability of PGM-based catalysts via precisely elec-tronic and coordination structure modulation,thus arising tremendous attention.However,sys-tematical discussions on this topic is still lacking.In this review,the representative progresses of nonmetal elements doped PGM-based electrocatalysts for different electrocatalytic reactions are summarized.Firstly,this review discusses the key factors that affect the activity and stability of the catalysts,and introduces the basic principles of nonmetal-doping for improving the performance of PGM-based catalysts.Secondly,advanced characterization techniques and theoretical calculations are highlighted respectively for revealing the activity enhancement mechanism.Then the synthesis methods to incorporate the nonmetals are listed,intending to provide inspirations for the future design of materials.The promising modification strategies for tuning the active species are further proposed.Afterwards,an overview of nonmetal-doped PGM-based catalysts is provided for the electrocatalytic applications,with an emphasis on revealing the structure-performance relationship.Finally,further developments and challenges involving synthesis,mechanism analysis,new materi-als as well as reactions,stability issues and practical applications are outlined,aiming to promote the in-depth research on advanced PGM-based catalysts.

ElectrocatalysisNonmetal dopingPlatinum group metal-based catalystOxygen reductionHydrogen evolution

李伊萍、王谭源、姚璋懿、陈麒安、李箐

展开 >

华中科技大学材料科学与工程学院,材料成形与模具技术国家重点实验室,湖北武汉 430074

电催化 非金属掺杂 铂族金属基催化剂 氧还原 氢析出

中央高校基本科研业务费专项

YCJJ20230101

2024

催化学报
中国化学会 中国科学院大连化学物理研究所

催化学报

CSTPCD
影响因子:1.269
ISSN:0253-9837
年,卷(期):2024.56(1)
  • 173