首页|电催化二氧化碳与含氮小分子共还原的缺陷与界面工程

电催化二氧化碳与含氮小分子共还原的缺陷与界面工程

扫码查看
化石燃料的大量燃烧和利用造成日益严重的能源危机、全球气候变暖和环境污染,己成为人类面临的严峻挑战.因此,迫切需要开发可持续的能源存储和转换技术.其中,将二氧化碳(CO2)、氮气(N2)、硝酸盐(NO3-)和亚硝酸盐(NO2-)等广泛分布的小分子和环境污染物转化为高附加值的化学品和燃料受到了广泛关注.然而,工业合成方法通常需要高温高压等极为苛刻的条件并消耗大量的能量(如Haber-Bosch和Bosch-Meiser方法分别用于合成氨(NH3)和尿素),这加剧了能源危机和环境污染.因此,在常温常压下,由可再生的电能驱动的电化学催化小分子转化为高附加值化学品被认为是最有前途的能量储存和转化技术之一,它为缓解日益严重的环境问题和能源危机提供了契机.本文系统地总结了近年来在常温常压下电催化CO2与含氮小分子(N2,NH3,NO2-和NO3-)共还原合成高附加值的含氮肥料(如尿素)和化学品(如酰胺和胺等)的研究进展,尤其是缺陷化学和界面工程与催化活性/选择性之间的构效关系.首先,根据空间尺寸和来源介绍了缺陷的分类,阐述了界面和缺陷之间的内在联系,总结了掺杂、刻蚀、热处理等缺陷构建方法,以及电镜法和谱学法等缺陷表征手段.其次,系统地介绍了通过构建空位(尤其是氧空位)、异原子掺杂、设计单原子催化剂及双原子催化剂等缺陷设计策略来提升电催化碳-氮(C-N)偶联反应合成含氮有机物性能的最新研究进展,阐明了不同缺陷结构对催化剂电子结构和反应物/中间体吸附特征的调控作用.此外,归纳了构建金属/金属界面、金属/碳界面和金属间化合物(合金)等界面工程策略对电催化性能的调控.通过总结经典案例,重点强调了影响目标产物催化性能和选择性的关键因素和描述符.最后,针对目前电催化C-N偶联反应中存在的反应过程复杂、催化机理不明确、副反应严重、目标产物催化活性和选择性较低等挑战,对未来发展趋势提出了展望:(1)采用机器学习、分子模拟计算、密度泛函理论计算等预测并筛选高效的缺陷和界面工程的电催化剂,并对可能的活性位点和反应路径进行预测;(2)优化催化剂制备过程,实现催化剂中不同缺陷和界面的可控合成;(3)发展先进的原位表征技术监测电催化剂表面上的动态变化和识别反应过程中产生的中间体,结合理论计算对电催化C-N耦合反应的催化机理和反应路径进行深入地理解.综上所述,本文系统地总结了通过缺陷和界面工程调控催化剂结构并提高电催化C-N偶联反应合成含氮有机物的策略,并对该领域目前存在的挑战和未来的发展前景进行了展望,为促进电化学C-N偶联反应的工业化应用提供借鉴.
Defect and interface engineering for promoting electrocatalytic N-integrated CO2 co-reduction
Current industrial manufacturing producing chemicals and fertilizers usually requires harsh condi-tions with high energy consumption,and is thus a major contributor to global carbon dioxide(CO2)emissions.With the increasing demand for sustainability,the scientific researchers are endeavoring to develop efficient carbon-neutral and nitrogen-cycle strategies that utilize sustainable energy storage and conversion technologies.In this context,electrocatalytic coupling of CO2 and nitroge-nous species(such as nitrogen,ammonia,nitrate,and nitrite)to high-value-added chemicals and fuels with rationally designed electrocatalysts is a promising strategy to restore the imbalanced carbon neutrality and nitrogen cycle.However,despite considerable breakthrough in recent years,the electrocatalytic N-integrated CO2 co-reduction still suffers from the unsatisfactory activity and selectivity,as well as the ambiguous C-N coupling mechanisms.In this review,we summarize the recent progress on defect and interface engineering strategies to design highly efficient electrocata-lysts for electrochemical C-N coupling.Especially,the structure-activity relationships between defect/interface engineering and electrochemical performance are systematically illustrated using representative experimental data and theoretical calculations.Moreover,the major challenge and future development direction of defect and interface engineering are also proposed.It is hoped that this work can provide guidance and enlightenment for the development of electrochemical C-N coupling technology.

C-N coupling reactionDefect engineeringInterface engineeringSynthetic ureaCO2 reduction

王志超、王梦凡、宦云飞、钱涛、熊杰、杨成韬、晏成林

展开 >

电子科技大学电子薄膜与集成器件国家重点实验室,四川成都 611731

苏州大学能源学院,苏州纳米科技协同创新中心,江苏苏州 215006

南通大学化学与化工学院,江苏南通 226019

常州大学石油化工学院,江苏常州 213164

展开 >

碳-氮偶联反应 缺陷工程 界面工程 合成尿素 二氧化碳还原

江苏省杰出青年基金

BK20220061

2024

催化学报
中国化学会 中国科学院大连化学物理研究所

催化学报

CSTPCD
影响因子:1.269
ISSN:0253-9837
年,卷(期):2024.57(2)
  • 148