氨是一种重要的化工原材料,广泛用于肥料、药物、塑料以及其它化工产品的生产.特别是,氨作为一种绿色、新型的替代燃料,正逐渐被视为未来可持续能源体系的重要组成部分之一.近期,研究者们提出了一种新的等离子体电催化合成氨的方法,为氨的生产开辟了新的途径.该方法首先在等离子处理条件下将空气中的氮气和氧气氧化成为氮氧化物;然后,通过电催化还原NOx-(主要为NO2-/NO3-等)合成氨.在该过程中,金属-氮-碳单原子(M-N-C SACs)催化剂因其金属原子利用率高、活性和选择性好等优点而受到广泛关注.然而,由于当前催化剂合成路线的可控性不足,导致金属中心的配位环境复杂,MNx配位数(x=2-5)不明确,阻碍了对催化剂本征活性趋势的深入揭示.为了解决上述问题,研究者们开始关注具有均匀且明确MN4结构的金属酞菁(MPc),并将其作为模型催化剂,用于深入研究电催化硝酸盐还原反应的活性位点和反应机理.本文将六种具有明确MN4结构的金属酞菁催化剂(M=Mn,Fe,Co,Ni,Cu和Zn)负载在卡博特碳黑XC-72R载体上,并探究了不同金属中心的MN4位点对硝酸盐还原合成氨的活性影响.扫描电子显微镜、X射线光电子能谱以及氮气吸脱附等温曲线结果表明,六种不同金属中心的MPc/XC-72R催化剂间的差异仅在于金属中心,从而排除了载体等其他因素的干扰.实验结果显示,金属中心对硝酸盐还原合成氨的活性顺序为:FeN4>CuN4>NiN4>MnN4>CoN4>ZnN4.其中,FeN4位点表现出最好的催化活性,在-1.0 V vs.RHE时,氨的法拉第效率达到83.3%,产率为2.94 mgNH3 h-1 cm-2,转化频率(TOF)为4395.2 h-1.相比之下,在相同条件下,ZnN4位点上亚硝酸盐的选择性和产率最高,亚硝酸盐的法拉第效率为49.1%,产率达到16.8mgNO2 h-1 cm-2.此外,FeN4位点的单原子催化剂表现出较好的循环稳定性,在-0.8 V vs.RHE的电位下,经过20次循环测试,氨的法拉第效率仍能维持在80%左右.密度泛函理论计算结果表明,FeN4位点对NO2中间体和氢原子具有适宜的吸附能,有利于硝酸盐加氢进一步生成氨.相比之下,NO2在ZnN4位点上吸附很弱,导致NO2容易从催化剂表面脱附至溶液中,形成亚硝酸盐副产物.此外,计算结果还显示,FeN4位点上硝酸还原反应的决速步骤NO*→HNO*的自由能差仅为0.07 eV,进一步证实了FeN4位点在硝酸盐还原合成氨反应中的优异活性.综上,本文系统研究了六种具有明确MN4结构的金属酞菁催化剂在硝酸盐还原合成氨反应中的活性趋势,并探究了不同MN4位点对硝酸盐还原的活性影响.结合密度泛函理论计算,揭示了不同MN4位点对硝酸盐还原反应的机理.为深刻理解硝酸盐还原反应机制,指导设计高效活性位提供了参考.
Unveiling the activity tendency of well-defined metal-N4 sites for electrocatalytic nitrate reduction
Metal-nitrogen-carbon single-atom catalysts(M-N-C SACs)have emerged as a highly promising material for ammonia synthesis from electrocatalytic nitrate reduction due to their isolated metal site and capacity to prevent the N-N coupling.However,understanding the structure-activity rela-tionship at molecular level remains challenging because of the inhomogeneous MNx structure pre-sented in current synthesized M-N-C catalysts.In this study,we utilized metal phthalocyanine(MPc)as a model platform catalyst containing a uniform and well-defined MN4 center to unravel their intrinsic activity tendency toward ammonia synthesis from nitrate reduction,both experimentally and theoretically.Our experimental results exhibit a significant activity difference for ammonia production in the order of FeN4>CuN4>NiN4>MnN4>CoN4>ZnN4,and among which the FeN4 site delivers much higher faradic efficiency and the highest turnover frequency of 83.3%and 4395.2 h-1 at-1.0 V vs.RHE,respectively.Density-functional theory calculations indicates that,compared to CoN4 and MnN4,the FeN4 site not only has appropriate adsorption strength for NOx intermediate species,but also has certain inhibitory effects on hydrogen evolution reaction process.These find-ings provide systematic and reliable guidance for catalyst synthesis toward nitrate reduction to NH3 from both the experimental and computational perspectives.