Synergy of charge migration direction-manipulated Z-scheme heterojunction of BiVO4 quantum dots/perylenetetracarboxylic acid and nanosized Au modification for artificial H2O2 photosynthesis
Herein,perylenetetracarboxylic acid (PTA) nanosheets with anisotropic charge migration driven by the formed internal electric fields are synthesized through a facile hydrolysis-reassembly process.Strategically,a Z-scheme heterojunction with free-flowing interfacial charge transfer and spatially separated redox centers is constructed based on the distinct photogenerated electrons and holes accumulation regions of PTA nanosheets by in-situ introducing BiVO4 quantum dots (BQD) and nanosized Au.The optimized BQD/PTA-Au exhibits a ca.6.4-fold and 4.8-fold enhancement in H2O2 production rate and apparent quantum yield at 405 nm compared with pristine PTA,respectively.The exceptional activities are attributed to the cascade Z-scheme charge transfer followed the matched charge migration orientation,as well as the Au active sites for accelerating 2e-oxygen reduction pathway induced by superoxide radicals,as unraveled by electron paramagnetic reso-nance,in-situ irradiated X-ray photoelectron spectroscopy and in-situ diffuse reflectance infrared Fourier transformation spectroscopy.This work provides a strategy to design an efficient Z-scheme system towards solar-driven H2O2 production.