首页|具有高曲率结构的枝晶状Cu/Cu2O在H型电解池中实现二氧化碳到C2产物的快速高效还原

具有高曲率结构的枝晶状Cu/Cu2O在H型电解池中实现二氧化碳到C2产物的快速高效还原

扫码查看
将CO2电还原(CO2RR)转化为可再生燃料,如CH4,C2H4,C2H5OH,被认为是实现碳循环和储存可再生能源的有效途径.与其他材料相比,铜(Cu)基催化剂对*CO中间体具有合适的吸附能,能够将CO2还原为多碳产物.但是,Cu基催化剂在高电流密度(大于100 mA cm-2)下的催化活性较低,选择性较差,这是亟待解决的问题.通过Cu0/Cu+界面策略可以提高CO2RR为C2产物的选择性.然而,在H型电解池中,由于传质限制,高质子浓度的溶液容易引起析氢反应(HER),同时催化剂表面发生的HER竞争反应也导致了产物电流密度的降低.随着反应进行,催化剂表面活性位点上CO2浓度逐渐降低,而溶液中的CO2不能及时补充到催化剂表面,进一步加剧了这一问题.本文在CO2气氛下合成了具有高曲率结构的枝晶状Cu/Cu2O.实验结果表明,得到的枝晶状Cu/Cu2O不仅具有较高的C2H4(51.42%)选择性,而且C2类产物(如C2H4,C2H5OH等)的总选择性达到69.82%,同时在H型电解池中具有较高C2H4(95.3 mA cm-2)和C2产物分电流密度(129.5 mA cm-2).有限元模拟计算结果表明,具有高曲率结构的枝晶状Cu/Cu2O表面产生了增强的局部电场,从而提高了催化剂表面局部CO2浓度.结合弛豫时间分布分析结果,发现高曲率的枝晶状结构能够主动吸附催化剂周围溶液环境中的CO2,提高了反应的传质速率,实现了还原过程中产物的高电流密度.在实验过程中,通过改变催化剂表面Cu0/Cu+的原子比,研究电子结构对催化剂性能的影响.在Cu0/Cu+的最佳原子比时,电荷转移电阻最小,中间体的解吸速率慢,更有利于C2产物的生成.密度泛函理论计算结果也表明,在Cu0/Cu+界面处,将CO2还原为C2的关键步骤(即决速步骤)所涉及反应中间体具有较低的吉布斯自由能,从而促进了C2H4形成.Cu/Cu2O催化剂还具有较低的Cu的d能带中心,增强了*CO在催化剂表面的吸附稳定性,促进了C2产物的形成,因此在快速传质条件下,Cu0/Cu+界面获得的是C2产物.最后,利用净现值模型计算了H型电解池工业应用的经济可行性,结果表明,H型电解池是否具有广阔的工业前景,取决于催化剂是否同时具有高选择性和高电流密度的能力.综上所述,将特殊形貌与催化剂成分相结合的设计策略,不仅可以将两者的优势相结合,还实现了单一条件时难以达到的效果,显著提升了CO2RR催化剂的性能.本研究将对CO2RR催化剂的设计和实际应用提供参考.
A dendritic Cu/CU2O structure with high curvature enables rapid and efficient reduction of carbon dioxide to C2 in an H-cell
Electrocatalytic reduction of CO2(CO2RR)to multicarbon products is an efficient approach for ad-dressing the energy crisis and achieving carbon neutrality.In H-cells,achieving high-current C2 products is challenging because of the inefficient mass transfer of the catalyst and the presence of the hydrogen evolution reaction(HER).In this study,dendritic Cu/Cu2O with abundant Cu0/Cu+interfaces and numerous dendritic curves was synthesized in a CO2 atmosphere,resulting in the high selectivity and current density of the C2 products.Dendritic Cu/Cu2O achieved a C2 Faradaic efficiency of 69.8%and a C2 partial current density of 129.5 mA cm-2 in an H-cell.Finite element simulations showed that a dendritic structure with a high curvature generates a strong electric field,leading to a localized CO2 concentration.Additionally,DRT analysis showed that a dendritic struc-ture with a high curvature actively adsorbed the surrounding high concentration of CO2,enhancing the mass transfer rate and achieving a high current density.During the experiment,the impact of the electronic structure on the performance of the catalyst was investigated by varying the atomic ratio of Cu0/Cu+on the catalyst surface,which resulted in improved ethylene selectivity.Under the optimal atomic ratio of Cu0/Cu+,the charge transfer resistance was minimized,and the desorption rate of the intermediates was low,favoring C2 generation.Density functional theory calculations indicated that the Cu0/Cu+interfaces exhibited a lower Gibbs free energy for the rate-determining step,enhancing C2H4 formation.The Cu/Cu2O catalyst also exhibited a low Cu d-band center,which enhanced the adsorption stability of*CO on the surface and facilitated C2 formation.This observa-tion explained the higher yield of C2 products at the Cu0/Cu+interface than that of H2 under rapid mass transfer.The results of the net present value model showed that the H-cell holds promising industrial prospects,contingent upon it being a catalyst with both high selectivity and high current density.This approach of integrating the structure and composition provides new insights for ad-vancing the CO2RR towards high-current C2 products.

Reduction of CO2High currentDendritic structureCu/Cu2OH-cell

邵磊、胡博琛、郝金辉、荆俊杰、施伟东、陈敏

展开 >

江苏大学化学化工学院,江苏镇江 212013

CO2还原反应 高电流 枝晶状结构 Cu/Cu2O H型电解池

国家自然科学基金国家自然科学基金中德合作集团项目江苏省国际科技创新支撑计划合作项目

2222580822075111GZ1579BZ2022045

2024

催化学报
中国化学会 中国科学院大连化学物理研究所

催化学报

CSTPCD
影响因子:1.269
ISSN:0253-9837
年,卷(期):2024.63(8)
  • 1