首页|两种危重症病人肠内营养不耐受风险预测模型的应用价值比较

两种危重症病人肠内营养不耐受风险预测模型的应用价值比较

扫码查看
目的:探究现有的危重症病人肠内营养不耐受风险预测模型的应用性能及应用价值.方法:采用Meta分析方法查找现有的危重症病人肠内营养不耐受的风险预测模型.选取2023年3月至2023年8月入住东部战区总医院重症医学科及各ICU符合纳排标准的病人应用于模型.采用受试者工作特征曲线下面积(AUROC)和Hosmer-Lemeshow拟合优度检验(H-L检验)评价模型区分度和校准度.结果:共纳入两种模型,收集了395例病人,161例发生不耐受(40.8%).模型1 AUROC为0.838(95%CI:0.798~0.873),模型2 AUROC为0.744(95%CI:0.698~0.786),采用Delong法比较两种模型的AUROC值,差异有统计学意义(P=0.0043),模型1 AUROC值优于模型2.模型1的H-L检验结果一般(X2=61.116,P<0.001),模型2的H-L检验结果较好(X2=3.659,P=0.887).结论:模型1的区分能力优于模型2,模型2的校准度优于模型1.模型1适用于病人病情变化时动态预测,模型2适用于病人进行肠内营养后初始预测.医护人员可根据临床具体情况联合使用两种模型,提高预测效能,也可开展高质量研究,构建新的风险预测模型.
Comparison of application value of two risk prediction models for prediction of intolerance risk in critically ill patients with enteral nutrition
Objective:To assess the predictive accuracy and practical utility of established risk prediction models for enteral nutrition intolerance in critically ill patients. Methods:A meta-analysis was conducted to identify existing risk prediction models for enteral nutrition intolerance in critically ill patients. Eligible patients admitted to the Department of Critical Care Medicine and various ICUs of General Hospital of Eastern Theater Command from March 2023 to August 2023, meeting natriuresis criteria, were included in the study. The discrimination and calibration of the two models were assessed using the area under the receiver operating characteristic curve (AUROC) and the Hosmer-Lemeshow goodness-of-fit test (H-L test). Results:Two models were analyzed, encompassing a total of 395 patients, among whom 161 experienced intolerances, resulting in an incidence rate of 40.8%. Model 1 demonstrated an AUROC of 0.838 (95%CI:0.798 ~ 0.873), while model 2 yielded an AUROC of 0.744 (95%CI:0.698 ~ 0.786). The Delong method was utilized to compare the AUROC values of the two models, revealing a statistically significant difference (P=0.0043). Notably, the model 1 exhibited superior performance compered to model 2. The H-L test for model 1 indicated fair calibration (X2=61.116, P<0.001), whereas model 2 demonstrated better calibration (X2=3.659, P=0.887). Conclusion:Model 1 exhibits superior discriminatory ability compared tomodel 2, while the calibration of model 2 surpasses that of model 1. Model 1 is well-suited for dynamic prediction, accommodating changes in patient condition over time. Conversely, Model 2 is appropriated for initial prediction following enteral nutrition initiation. Healthcare professionals can integrate bothmodels based on the specific clinical conditions to enhance predictive accutacy. Additionally, they can undertake high-quality research to develop a novel risk prediction model.

Critical illnessEnteral nutritionICUPrediction modeRisk of occurrence

卜黎静、程飞儿、张爱琴、赵敏燕、张议丹

展开 >

南京大学医学院,江苏南京 210093

南京大学医学院附属金陵医院/东部战区总医院信息数据中心,江苏南京 210002

危重症 肠内营养 重症监护室 预测模型 发生风险

国家临床重点专科建设项目

2016ZDZK001

2024

肠外与肠内营养
南京军区南京总医院,解放军普通外科研究所

肠外与肠内营养

CSTPCD北大核心
影响因子:1.974
ISSN:1007-810X
年,卷(期):2024.31(2)
  • 25