财务与金融2024,Vol.39Issue(1) :14-21.

基于LASSO-LSTM-CNN混合模型的中国能源指数预测研究

Research on China's Energy Index Prediction Based on the LASSO-LSTM-CNN Hybrid Model

吴忠睿 吴金旺
财务与金融2024,Vol.39Issue(1) :14-21.

基于LASSO-LSTM-CNN混合模型的中国能源指数预测研究

Research on China's Energy Index Prediction Based on the LASSO-LSTM-CNN Hybrid Model

吴忠睿 1吴金旺1
扫码查看

作者信息

  • 1. 浙江金融职业学院,浙江杭州,310000
  • 折叠

摘要

伴随着经济的高速发展,中国已成为全球一次性能源消费量最大的国家.能源兼具商品属性和金融属性,为积极应对能源危机和金融风险,中国积极转变经济增长方式,倡导绿色发展新理念.能源行业股票价格是能源市场利益相关者博弈最直接、最有效的反应,能源价格波动具有溢出效应、非对称效应和聚集效应.以我国能源指数为研究对象,通过引入深度学习技术,将高频数据和低频数据有机结合成预测大数据集,创新地构建LASSO-LSTM-CNN深度学习混合模型,预测精准度得到显著提升.研究结果显示,中长期预测可将LASSO-LSTM或LASSO-LSTM-CNN修改为多步输出的静态预测,其效果显著优于动态预测,精准度和泛化能力均有提升;但对于长期预测,由于高频数据的解释能力逐渐变弱,因此要综合考虑是否使用高频数据.我国应从生态视角认识能源在产业链中的基础与核心作用,积极发展绿色清洁能源.同时,充分利用LASSO和LSTM-CNN模型的优势,有效提升能源指数预测的准确性,为金融决策提供重要参考;在中期预测中充分考虑高频数据对预测能力的正向影响,而在中长期预测中谨慎应用高频数据.

Abstract

With rapid economic growth,China has become the largest consumer of primary energy in the world.Energy possesses both commodity and financial attributes.To proactively address energy crises and financial risks,China is actively transforming its economic growth model and advocating a new paradigm of green development.The stock prices of the energy industry are the most direct and effective reflection of the game among stakeholders in the energy market,and fluctuations in energy prices have spillover effects,asymmetric effects,and aggregation effects.Taking China's Energy Index as the research object,this study innovatively introduces deep learning technology to organically integrate high-frequency and low-frequency data into a predictive big data set.By innovatively constructing the LASSO-LSTM-CNN deep learning hybrid model,the pre-diction accuracy has been significantly improved.The study results show that mid-to-long-term forecasts can modify the LASSO-LSTM or LASSO-LSTM-CNN to static multi-step output forecasts,which significantly outperform dynamic forecasts,with improvements in both accuracy and generalization capabilities.However,for long-term forecasts,as the explanatory power of high-frequency data gradually diminishes,it is necessary to comprehensively consider whether to use high-frequency data.China should recognize the fundamental and central role of energy in the industry chain from the perspective of ecology,and actively develop green and clean energy.At the same time,by fully utilizing the advantages of LASSO and LSTM-CNN mod-els,the accuracy of energy index prediction can be effectively improved,providing important references for financial decision-making.In mid-term forecasting,the positive impact of high-frequency data on forecasting ability should be fully considered,while in mid-to-long-term forecasting,the application of high-frequency data should be cautious.

关键词

LASSO-LSTM-CNN混合模型/能源指数/混频预测

Key words

LASSO-LSTM-CNN Hybrid Model/Energy Index/Mixed Frequency Prediction

引用本文复制引用

基金项目

浙江省金融教育基金会2024年度一般课题(2024Y13)

浙江金融职业学院2024年度校级科研项目青年科研一般项目(2024YB11)

出版年

2024
财务与金融
中南大学

财务与金融

CHSSCD
影响因子:0.601
ISSN:1674-3059
段落导航相关论文