首页|基于HPO-LSTM的柴油机NOx虚拟预测技术研究

基于HPO-LSTM的柴油机NOx虚拟预测技术研究

扫码查看
在严格的排放法规面前,柴油机后处理系统发挥了不可估量的作用,而获取 NOx 排放是后处理系统中SCR装置得以正常工作的前提之一.建立一种使用猎人猎物优化(HPO)算法优化长短期记忆(LSTM)网络的虚拟预测模型,实现对柴油机 NOx 排放准确预测,以代替现有物理传感器或作为并行装置监控其运行.试验在柴油机测功机上进行,在高度瞬态的柴油机运行周期内,输入了若干种便于获取且与 NOx 形成密切相关的参数至模型中,结果表明:该优化后的网络应用于测试集和全新的未知瞬态工况时,与未优化网络的预测结果相比,RMSE 分别提高了 29.1%和 23.4%,R2 分别大于和接近 0.95,预测结果与传感器测量值呈现高度相同的变化趋势,满足了车载运用和准确性的需求,验证了该方法的可行性.
NOx Virtual Prediction Technology of Diesel Engine Based on HPO-LSTM
In the face of strict emission regulations,the diesel engine post-treatment system plays an immeasurable role,and the acquisition of NOx emissions is one of the prerequisites for the normal operation of SCR device in the post-treatment sys-tem.A virtual prediction model that used hunter-prey optimization(HPO)algorithm to optimize long short term memory(LSTM)network was established to accurately predict NOx emissions of diesel engine in place of existing physical sensors or as a parallel device to monitor their operation.The test was carried out on a dynamometer of diesel engine.During the highly transient operation cycle of diesel engine,several parameters that were easy to obtain and closely related to NOx formation were input into the model.The results show that,compared with the prediction results of non-optimized network,RMSE increases by 29.1%and 23.4%,and R2 is greater than and close to 0.95 respectively when the optimized network is applied to the test set or to a new unknown transient condition.The prediction results show a highly identical trend with the measured values of sen-sor,which meets the requirements of on-board application and accuracy and hence verifies the feasibility of this method.

diesel engineNOxpredictionhunter-prey optimization algorithmlong short term memory network

潘恒斌、官维、潘明章、梁科、文涛、姜淑君

展开 >

广西大学机械工程学院,广西 南宁 530004

无锡职业技术学院,江苏 无锡 214121

柴油机 氮氧化物 预测 猎人猎物优化算法 长短期记忆网络

国家自然科学基金面上项目广西重点研发计划广西重点研发计划

22172038桂科 AB21220059桂科 AB22080085

2024

车用发动机
兵器工业车用发动机专业情报网 中国北方发动机研究所

车用发动机

CSTPCD北大核心
影响因子:0.333
ISSN:1001-2222
年,卷(期):2024.(1)
  • 4