首页|基于MCKD-HED-CNN的连杆轴承故障诊断

基于MCKD-HED-CNN的连杆轴承故障诊断

扫码查看
针对强背景噪声干扰下连杆轴承故障诊断难的问题,提出了基于 MCKD-HED-CNN的连杆轴承故障诊断方法.首先采用最大相关峭度解卷积(MCKD)对获取的信号进行降噪处理,增强信号中因故障引起的周期性冲击,其次通过 Hilbert包络解调(H ED)进一步增强周期性冲击,最后将故障特征通过对称点模式(SPD)映射到极坐标图上,并将 SDP图像输入CNN网络进行训练,建立连杆轴承故障诊断模型.结果表明:该方法能有效诊断连杆轴承故障,CNN训练样本和测试样本的诊断准确率均为 100%.
Fault Diagnosis of Connecting Rod Bearing Based on MCKD-HED-CNN
Aiming at the difficult fault diagnosis of connecting rod bearing under strong background noise,the fault diagnosis method of MCKD-HED-CNN was proposed.Firstly,the maximum correlation kurtosis deconvolution(MCKD)algorithm was used to reduce noise and enhance the periodic impact caused by fault.Secondly,the Hilbert envelope demodulation(HED)was used to further enhance the periodic impact.Finally,the fault features were mapped to the polar map by the symmetric point mode(SPD)and the SDP image was input into CNN network for training to establish the fault diagnosis model of connecting rod bearing.The results show that the method can effectively diagnose the fault of connecting rod bearing,and the diagnosis ac-curacy of CNN training samples and test samples is 100%.

internal combustion engineconnecting rod bearingfault diagnosissignal processing

贾继德、沈杨、徐彩莲

展开 >

厦门工学院柔性制造装备集成福建省高校重点实验室,福建 厦门 361021

西安交通大学机械制造系统工程国家重点实验室,陕西 西安 710049

内燃机 连杆轴承 故障诊断 信号处理

机械制造系统工程国家重点实验室开放基金

sklms2020021

2024

车用发动机
兵器工业车用发动机专业情报网 中国北方发动机研究所

车用发动机

CSTPCD北大核心
影响因子:0.333
ISSN:1001-2222
年,卷(期):2024.(1)
  • 2