首页|基于DBO-MPC的混合动力汽车能量管理策略

基于DBO-MPC的混合动力汽车能量管理策略

扫码查看
混合动力汽车(hybrid electrical vehicle,HEV)的能量管理策略直接决定了车辆的燃油经济性、驾驶性能和寿命,为解决 HEV能量管理策略的最优性与实时行驶工况不确定性之间的矛盾,以混联式 HEV 为研究对象,提出一种基于模型预测控制(model predictive control,MPC)与蜣螂优化算法(dung beetle optimizer,DBO)的 HEV能量管理策略.首先,该策略采用基于堆叠式长短时记忆神经网络(stacked long-short term memory neural net-work,Stacked LSTM-NN)的车速预测模型预测未来行驶车速.其次,根据预测车速将混合动力汽车的功率分配问题描述为 MPC预测范围内的滚动优化问题,提出考虑燃料消耗和电池保护的成本函数,利用 DBO 算法对预测时域内发动机功率进行优化求解.最后,在城市道路循环(urban dynamometer driving schedule,UDDS)工况下分别对所提策略的车速预测精度和经济性与其他策略进行仿真对比验证.结果表明:与传统 LSTM速度预测模型相比,Stacked LSTM速度预测模型的 RMSE降低了 13.9%,每步平均预测时间减少 1 ms;与基于规则的策略相比,基于DBO-MPC的策略模型节油率达到 25.3%,同时 SOC状态波动更为平稳,对电池的保护效果更好.
Energy Management Strategy of Hybrid Electric Vehicle Based on DBO-MPC
The energy management strategy of hybrid electric vehicle(HEV)directly determines the fuel economy,driving performance and life of vehicle.In order to solve the contradiction between the optimal energy management strategy of HEV and the uncertainty of real-time driving conditions,the energy management strategy of HEV based on model predictive control(MPC)and Dung beetle optimizer(DBO)was proposed based on the research object of hybrid HEV.First,the strategy used the vehicle speed prediction model to predict future driving speed based on stacked long-short term memory neural network(Stacked LSTM-NN).Then,according to the predicted vehicle speed,the power distribution problem of HEV was described as a rolling optimization problem within the MPC prediction range.Considering the cost function of fuel consumption and bat-tery protection,the DBO algorithm was used to optimize the engine power in the forecast time domain.Finally,under urban dynamometer driving schedule(UDDS)conditions,the speed prediction accuracy and fuel economy of proposed strategy were simulated and compared with other strategies.Compared with the traditional LSTM speed prediction model,the RMSE of Stacked LSTM speed prediction model reduces by 13.9%,and the average prediction time of each step reduces by 1 ms.Com-pared with the rule-based strategy,the fuel saving rate of DBO-MPC strategy model reached 25.3%,and the SOC state is more stable and the battery protection effect is better.

hybrid electric vehicleenergy managementcontrol strategyvehicle speed prediction

毛星宇、蒙艳玫、许恩永、赵德平、陈远玲、刘鑫

展开 >

广西大学机械工程学院,广西 南宁 530004

华中科技大学机械科学与工程学院,湖北 武汉 430074

东风柳州汽车有限公司,广西 柳州 545005

混合动力汽车 能量管理 控制策略 车速预测

&&柳州市重大专项柳州市重大专项广西壮族自治区研究生教育创新计划

桂科AA230620402021AAA01122021AAA0104YCBZ2022007

2024

车用发动机
兵器工业车用发动机专业情报网 中国北方发动机研究所

车用发动机

CSTPCD北大核心
影响因子:0.333
ISSN:1001-2222
年,卷(期):2024.(3)