首页|基于动态遗忘因子递推最小二乘法和改进粒子滤波算法的锂电池SOC估计

基于动态遗忘因子递推最小二乘法和改进粒子滤波算法的锂电池SOC估计

扫码查看
为了提高锂电池荷电状态(SOC)估计的精度,提出了一种基于动态遗忘因子递推最小二乘法和改进粒子滤波算法相结合的锂电池 SOC估计方法.针对固定遗忘因子递推最小二乘法在电池参数辨识中难以同时保持快速收敛和稳定性的问题,引入动态遗传因子,以模型辨识值和实际值的残差为变量构建修正公式,实现遗忘因子动态调整.为了改善粒子滤波(PF)的粒子多样性丧失问题,采用白鹭群优化算法(ESOA)对粒子滤波算法进行优化.仿真结果表明,基于动态遗忘因子递推最小二乘法和改进粒子滤波算法的锂电池 SOC 估计误差始终保持在0.3%以内,平均绝对误差和标准差为 0.15%和 0.17%,与其他算法相比具有更好的精度和稳定性.
SOC Estimation of Lithium Battery Based on Dynamic Forgetting Factor Recursive Least Squares and Improved Particle Filtering Algorithm
In order to improve the accuracy of SOC estimation for lithium battery,a lithium battery SOC estimation method was proposed based on the combination of dynamic forgetting factor recursive least squares and improved particle filtering algo-rithm.The fixed forgetting factor recursive least squares method was difficult to maintain the fast convergence and recognition accuracy at the same time in battery parameter identification,a dynamic genetic factor was hence introduced and the residual difference between the identified and actual values of model was used as the variable to construct a correction formula to achieve the dynamic adjustment of forgetting factor.In order to improve the problem of particle diversity loss in particle filter(PF),the egret swarm optimization algorithm(ESOA)was used to optimize the particle filtering algorithm.The simulation results show that the estimation error of lithium battery SOC always remains within 0.3%after using the dynamic forgetting factor re-cursive least squares method and the improved particle filtering algorithm,with the mean absolute error and standard deviation of 0.15%and 0.17%.Compared with other algorithms,the new algorithm has better accuracy and stability.

lithium batterySOCdynamic forgetting factorrecursive least squareegret swarm optimization algorithmparti-cle filter

卢昊、李广军、张兰春

展开 >

江苏理工学院汽车与交通工程学院,江苏 常州 213001

锂电池 电池荷电状态(SOC) 动态遗忘因子 递推最小二乘法 白鹭群优化算法 粒子滤波

江苏省高等学校基础科学(自然科学)研究重大项目

22KJA580002

2024

车用发动机
兵器工业车用发动机专业情报网 中国北方发动机研究所

车用发动机

CSTPCD北大核心
影响因子:0.333
ISSN:1001-2222
年,卷(期):2024.(3)