首页|基于GWO-LSTM的柴油机NOx排放预测

基于GWO-LSTM的柴油机NOx排放预测

扫码查看
柴油机NOx 是机动车主要的有害排放物质,精确测量NOx 排放有利于SCR尿素喷射的控制从而减少排放,而现有的氮氧传感器和通过标定获得的排放MAP均难以实现瞬态条件下NOx 的实时测量.使用主成分分析法(PCA)对全球统一瞬态试验循环(WHTC)的柴油机工况参数进行降维处理,基于长短期记忆神经网络(LSTM)搭建柴油机 NOx 实时预测模型,并利用灰狼优化算法(GWO)对 LSTM模型进行参数优化.结果显示:GWO-LSTM预测模型在未训练的数据集上的平均相对误差(MAPE)为 3.23%,证明该模型能够精准实现柴油机NOx 排放的实时预测,并具有良好的泛化能力和可靠性,为以软件替代硬件实现柴油排放控制提供了参考.
NOx Emission Prediction of Diesel Engine Based on GWO-LSTM
NOx emission of Diesel engine is the main harmful emission substance of motor vehicles;accurate measurement of NOx emission is conducive to the control of urea injection to reduce emissions.However,the existing NOx sensors and emis-sion MAP obtained by calibration are both difficult to achieve real-time measurement of NOx under transient conditions.Princi-pal component analysis(PCA)was used to reduce the dimension of diesel engine operating parameters for world harmonized transient cycle(WHTC).A real-time diesel NOx prediction model was built based on long and short-term memory(LSTM)neural network,and the parameters of LSTM were optimized by grey wolf optimization(GWO)algorithm.The results show that the mean absolute percentage error(MAPE)of GMO-LSTM prediction model on the untrained data set is 3.23%,which proves that the model can accurately achieve real-time prediction of NOx emissions of diesel engines.In addition,the model has good generalization ability and reliability,which provides a reference for the realization of diesel emission control with software instead of hardware.

diesel enginenitrogen oxideprediction modellong and short-term memory neural networkgrey wolf optimization algorithm

陆必伟、李捷辉

展开 >

江苏大学汽车与交通工程学院,江苏 镇江 212013

柴油机 氮氧化物 预测模型 长短期记忆神经网络 灰狼优化算法

2024

车用发动机
兵器工业车用发动机专业情报网 中国北方发动机研究所

车用发动机

CSTPCD北大核心
影响因子:0.333
ISSN:1001-2222
年,卷(期):2024.(3)