首页|基于I-GWO-BP神经网络的柴油机NOx排放预测模型

基于I-GWO-BP神经网络的柴油机NOx排放预测模型

扫码查看
针对高原环境不同海拔地区工程机械柴油发动机 NOx 排放与实际运行工况之间的复杂非线性关系,提出了一种基于维度学习的狩猎(DLH)搜索策略改进 GWO-BP 神经网络的 NOx 排放预测模型。利用便携式排放测试系统(PEMS)对高原地区叉车进行不同海拔下的实际运行工况排放试验,并将试验数据作为数据集,通过随机森林算法完成预测模型的输入特征选择。结果表明:I-GWO-BP 模型相对于 BP 和 GWO-BP 模型在评价指标RMSE和R2 上表现更优,RMSE 和R2 分别为 4。623 3 mg/s 和 0。925 1,该模型对高原地区不同海拔下工程机械NOx 排放的预测精度更高。
NOx Emission Prediction Model of Diesel Engine Based on I-GWO-BP Neural Network
For addressing the complex nonlinear relationship between NOx emissions from diesel engines of construction ma-chinery in different altitudinal regions of plateau environments and actual operational conditions,a diminishing learning-based hunting(DLH)search strategy to improve the grey wolf optimizer(GWO)-BP was proposed to optimize a BP neural network model for predicting NOx emissions.A portable emission measurement system(PEMS)was used to conduct emission tests on forklifts in plateau areas under various altitudinal operational conditions,and the experiment data were served as the dataset.Feature selection for the prediction model input was completed using the random forest algorithm.The results showed that the I-GWO-BP model outperformed both the BP and GWO-BP models in terms of evaluation metrics RMSE and R2,with RMSE and R2 values of 4.623 3 mg/s and 0.925 1 respectively.The model exhibited good prediction accuracy for NOx emissions from construction machinery at different altitudes in plateau areas.

plateaunitrogen oxidesfeature parameterprediction model

张凯强、王勇、翟军强、江先锋、王小雷、王宁峰

展开 >

青海大学机械工程学院,青海 西宁 810016

青海省高原科技发展有限公司,青海 西宁 810006

青海省内燃动力机械高原动力和排放重点实验室,青海 西宁 810006

青海大学化工学院,青海 西宁 810016

展开 >

高原 氮氧化物 特征参数 预测模型

2024

车用发动机
兵器工业车用发动机专业情报网 中国北方发动机研究所

车用发动机

CSTPCD北大核心
影响因子:0.333
ISSN:1001-2222
年,卷(期):2024.(6)