首页|基于实际道路数据的重型车碳排放预测模型

基于实际道路数据的重型车碳排放预测模型

扫码查看
全球变暖与重型车的燃油消耗和温室气体(主要是二氧化碳(CO2))排放直接相关,对此中国主要通过底盘测功机法对重型车的燃油消耗量和CO2排放进行认证,同时便携式排放测试系统(PEMS)和排放远程监控采集大量的车辆实际道路数据进行监控.提出了一种分区重构的计算模型,即利用实际道路数据预测车辆的底盘测功机燃油消耗量和CO2排放;基于发动机扭矩和转速对实际道路的燃油消耗量数据进行分区聚类,以便较好地反映发动机真实燃油消耗量水平;通过底盘测功机和实际道路数据(PEMS试验及排放远程监控)对模型进行了验证.结果表明:对于基于车载诊断(OBD)数据流的累积燃油消耗量,模型的预测相对误差小于5%;对于袋采结果,模型的预测相对误差小于10%.
A heavy-duty vehicle carbon emission predictive model based on real-road data
Global warming is directly related to heavy-duty vehicle fuel consumption and green-house gas(carbon dioxide(CO2)mainly)emissions,which are certified on the vehicle chassis dynamom-eter in China.Currently,vast amounts of vehicle real-road data from the portable emission measurement system(PEMS)and remote monitoring system are being collected worldwide.A binning-reconstruction calculation model is proposed,to predict the chassis dynamometer fuel consumption and CO2 emissions with real-road data.The engine's real fuel consumption level can be reflected by binning and clustering the real-road fuel consumption data based on the engine's torque and speed.The model is validated through chassis dynamometer and real-road data(PEMS test and remote monitoring data).The results show that for accumulated fuel consumption based on the on-board diagnostic(OBD)data stream,a pre-dictive relative error less than 5%is expected for the present model.For bag sampling results,the pro-posed model's accuracy is expected to be within 10%.

heavy-duty vehiclecarbon emissiongreenhouse gasfuel consumptionreal roadpredictive modelremote monitoring

任烁今、方茂东、仝畅、刘志伟、李腾腾、王凤滨

展开 >

中国汽车技术研究中心有限公司,天津 300300

重型车 碳排放 温室气体 燃料消耗 实际道路 预测模型 远程监控

2024

柴油机设计与制造
上海柴油机股份有限公司

柴油机设计与制造

影响因子:0.156
ISSN:1671-0614
年,卷(期):2024.30(4)