首页|经验模态分解算法在人体医学信号中的应用研究

经验模态分解算法在人体医学信号中的应用研究

扫码查看
由于生物信号中的非线性和非平稳特性,一些传统方法,如傅里叶变换可能难以准确捕捉信号的多尺度结构,导致特征提取不充分.文章提出了一种集合经验模态分解和多尺度排列熵的组合处理方法.首先,通过应用自适应噪声完备集合经验模态分解算法(CEEMDAN),可以将信号有效地分解为多个本征模态函数(IMF);其次,引入多尺度排列熵对这些IMF进行多尺度复杂性分析,以研究信号在不同时间、尺度下的复杂性变化;接着,将不同时间尺度下信号的动态变化特征输入到支持向量机分类器,把结果分为正常和异常两种类型;最后,将该组合方法应用于不同类型的人体医学信号,包括心音信号和脑电信号等.实验结果表明:采用CEEMDAN算法,结合多尺度排列熵提取信号特征,能够有效地提高分类精度.脑电癫痫信号分类结果的平均准确率达到99.8%,心音信号的分类模型性能指标达94.71%.
Research on the application of empirical mode decomposition algorithm in human medical signal
Due to the nonlinear and non-stationary characteristics of biological signals,some traditional methods such as Fourier transform may be difficult to accurately capture the multi-scale structure of the signal,resulting in inadequate feature extraction.In this paper,a combined approach of ensemble empirical mode decomposition and multi-scale permutation entropy is proposed.Firstly,by applying the adaptive noise complete set empirical mode decomposition algorithm(CEEMDAN),the signal can be efficiently decomposed into multiple eigenmode functions(IMFs).Secondly,multi-scale permutation entropy is introduced to analyze the complexity of these IMFs in order to study the change of signal complexity at different time scales.Then,the dynamic change characteristics of signals at different time scales are input into SVM classifier,and the results are divided into normal and abnormal types.Finally,the combined method is applied to different types of human medical signals,including heart sound signal and EEG signal.The experimental results show that the CEEMDAN algorithm combined with multi-scale permutation entropy can effectively improve the classification accuracy.The average accuracy of EEG epilepsy signal classification was 99.8%,and the performance index of heart sound signal classification model was 94.71%.

empirical mode decompositionhuman biomedical signalsnonlinearitymulti-scale permutation entropy

吴全玉、孙健、胡鸣瑛、曹艺凡、陶为戈、潘玲佼、刘晓杰

展开 >

江苏理工学院电气信息工程学院,江苏常州 213001

经验模态分解 人体医学信号 非线性 多尺度排列熵

2024

江苏理工学院学报
江苏技术师范学院

江苏理工学院学报

CHSSCD
影响因子:0.369
ISSN:2095-7394
年,卷(期):2024.30(6)