首页|基于深度学习的农作物病虫害图像识别方法

基于深度学习的农作物病虫害图像识别方法

扫码查看
针对农作物病虫害图像识别精度和效率低的问题,提出一种基于卷积神经网络和迁移学习的多粒度特征分割模型(MGFSM).模型采用ResNet-50作为骨干网络,利用预训练权重进行参数共享,以提高识别精度和稳定性.MGFSM包含全局分支和局部分支,全局分支学习整个图像的外观模型,局部分支解决复杂背景和遮挡问题.同时,联合使用度量损失和分类损失函数,以克服类内间距大和类间间距小的问题,提高病虫害图像辨别性.通过迁移学习,将知识迁移到增强后的目标数据上,增强模型对不同病虫害种类的适应性.实验结果表明,MGFSM模型在PlantVillage数据集上具有较高的识别精度和泛化能力,可应用于移动端和嵌入式设备中,具有一定的实用价值.
Image Recognition of Crop Diseases and Pests Based on Deep Learning
To address the problem of low accuracy and efficiency in the image recognition of crop disea-ses and pests,a multi-granularity feature segmentation model(MGFSM)based on convolutional neural networks and transfer learning is proposed.This model utilizes ResNet-50 as the backbone network and le-verages pre-trained weights for parameter sharing to enhance recognition accuracy and stability.MGFSM comprises a global branch that learns the appearance model of the entire image and a local branch that ad-dresses complex backgrounds and occlusion issues.Additionally,it jointly utilizes metric loss and classifi-cation loss functions to overcome the challenges of large intra-class distances and small inter-class dis-tances,thereby improving the discriminability of disease and pest images.The model's adaptability to dif-ferent types of diseases and pests is enhanced by transferring knowledge to the augmented target data through transfer learning.Experimental results demonstrate that the MGFSM model exhibits high recog-nition accuracy and generalization capabilities on the PlantVillage dataset,making it suitable for practical applications on mobile and embedded devices.

image recognitionconvolutional neural networksResNet-50loss functionstransfer learning

崔梦银、邓茵、崔盼盼

展开 >

广东科技学院计算机学院,广东东莞 523668

商丘工学院信息与电子工程学院,河南商丘 476000

图像识别 卷积神经网络 ResNet-50 损失函数 迁移学习

广东科技学院校级科研(自然科学类)一般项目广东科技学院大学生创新创业训练计划项目

GKY-2023KYYBK-15202313719004

2024

沧州师范学院学报
沧州师范学院

沧州师范学院学报

影响因子:0.151
ISSN:2095-2910
年,卷(期):2024.40(1)
  • 22