首页|基于Stacking模型融合下的HPC抗压强度预测

基于Stacking模型融合下的HPC抗压强度预测

扫码查看
为了实现高性能混凝土(HPC)抗压强度快速、准确地预测,基于58组HPC配合比数据,选取9个可解释特征作为模型输入变量,采用Stacking集成学习模型对HPC抗压强度进行预测,并与其他4种单一模型进行对比.结果表明:相较于传统的基模型,Stacking集成学习模型的误差值最小,相关系数最大,对HPC抗压强度预测的MAPE、MAE、RMSE、R2分别为11.40%、3.72、5.04、0.91,该模型对HPC抗压强度的预测具有更高的准确性.
Prediction of High Performance Concrete Compressive Strength based on Stacking
In order to achieve rapid and accurate prediction of the compressive strength of high perform-ance concrete(HPC),the study is based on the dataset of 58 HPC mix proportions,utilizing Stacking ensemble learning model with nine interpretable features as input variables to predict the compressive strength of HPC compared with the other four single models.The results showed that compared with the traditional base models,the Stacking ensemble learning model had the smallest error values and the largest determination coefficient.The mean absolute percentage error,mean absolute error,root mean square error and correlation coefficients for compressive strength prediction of the high performance concrete were 11.40%、3.72、5.04、0.91,respectively,The proposed model had higher accuracy in pre-dicting HPC compressive strength.

high performance concretecompressive strengthbase modelStacking

徐玲、景楠、石光、郭治龙、景向楠、袁瑞

展开 >

合肥城市学院土木工程学院(合肥238076)

陕西省引汉济渭工程建设有限公司(西安710000)

国家能源集团国能宝日希勒能源有限公司(内蒙古 呼伦贝尔021000)

中国科学院西北生态环境资源研究院(北京100049)

合肥城市学院经济与管理学院(合肥238076)

滁州学院土木与建筑工程学院(安徽滁州239000)

展开 >

高性能混凝土 抗压强度 基模型 Stacking

2024

滁州学院学报
滁州学院

滁州学院学报

影响因子:0.235
ISSN:1673-1794
年,卷(期):2024.26(5)